On the distribution of mass in collinear central configurations
Author:
Peter W. Lindstrom
Journal:
Trans. Amer. Math. Soc. 350 (1998), 24872523
MSC (1991):
Primary 70F10
MathSciNet review:
1422613
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Moulton's Theorem says that given an ordering of masses, , there exists a unique collinear central configuration with center of mass at the origin and moment of inertia equal to 1. This theorem allows us to ask the questions: What is the distribution of mass in this standardized collinear central configuration? What is the behavior of the distribution as ? In this paper, we define continuous configurations, prove a continuous version of Moulton's Theorem, and then, in the spirit of limit theorems in probability theory, prove that as , under rather general conditions, the discrete mass distributions of the standardized collinear central configurations have distribution functions which converge uniformly to the distribution function of the unique continuous standardized collinear central configuration which we determine.
 1.
Gregory
Buck, The collinear central configuration of 𝑛 equal
masses, Celestial Mech. Dynam. Astronom. 51 (1991),
no. 4, 305–317. MR 1134436
(92k:70013), http://dx.doi.org/10.1007/BF00052924
 2.
L. Euler, 1767, De moto recilineo trium corporum se mutuo attahentium, Novi Comm. Acad. Sci. Imp. Petrop. 11, 144151.
 3.
Peter
W. Lindstrom, Limiting mass distributions of minimal potential
central configurations, Hamiltonian dynamics and celestial mechanics
(Seattle, WA, 1995) Contemp. Math., vol. 198, Amer. Math. Soc.,
Providence, RI, 1996, pp. 109–129. MR 1409156
(97g:70015), http://dx.doi.org/10.1090/conm/198/02487
 4.
Kenneth
R. Meyer and Glen
R. Hall, Introduction to Hamiltonian dynamical systems and the
𝑁body problem, Applied Mathematical Sciences, vol. 90,
SpringerVerlag, New York, 1992. MR 1140006
(93b:70002)
 5.
Richard
Moeckel, On central configurations, Math. Z.
205 (1990), no. 4, 499–517. MR 1082871
(92b:70012), http://dx.doi.org/10.1007/BF02571259
 6.
R. Moeckel, Some relative equilibria of equal masses, , unpublished.
 7.
F. R. Moulton, 1910, The straight line solutions of the problem of bodies, Ann. Math., II. Ser. 12, 117.
 8.
Donald
G. Saari, On the role and the properties of 𝑛body central
configurations, Proceedings of the Sixth Conference on Mathematical
Methods in Celestial Mechanics (Math. Forschungsinst., Oberwolfach, 1978),
Part I, 1980, pp. 9–20. MR 564603
(81a:70016), http://dx.doi.org/10.1007/BF01230241
 1.
 G. Buck, 1991, The collinear central configuration of equal masses, Celestial Mech. Dynam. Astronom. 51, 305317. MR 92k:70013
 2.
 L. Euler, 1767, De moto recilineo trium corporum se mutuo attahentium, Novi Comm. Acad. Sci. Imp. Petrop. 11, 144151.
 3.
 P. W. Lindstrom, 1996, Limiting mass distributions of minimal potential central configurations, Hamiltonian Dynamics and Celestial Mechanics, Contemporary Mathematics, vol. 198, Amer. Math. Soc., Providence, RI, pp. 109129. MR 97g:70015
 4.
 K. R. Meyer and G. R. Hall, 1992, Introduction to Hamiltonian Dynamical Systems and the Body Problem, SpringerVerlag. MR 93b:70002
 5.
 R. Moeckel, 1990, On central configurations, Math. Z. 205, 499517. MR 92b:70012
 6.
 R. Moeckel, Some relative equilibria of equal masses, , unpublished.
 7.
 F. R. Moulton, 1910, The straight line solutions of the problem of bodies, Ann. Math., II. Ser. 12, 117.
 8.
 D. G. Saari, 1980, On the role and properties of body central configurations, Celestial Mech. 21, 920. MR 81a:70016
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
70F10
Retrieve articles in all journals
with MSC (1991):
70F10
Additional Information
Peter W. Lindstrom
Affiliation:
Department of Mathematics, Saint Anselm College, Manchester, New Hampshire 03102
DOI:
http://dx.doi.org/10.1090/S0002994798019643
PII:
S 00029947(98)019643
Received by editor(s):
October 1, 1995
Received by editor(s) in revised form:
September 20, 1996
Article copyright:
© Copyright 1998
American Mathematical Society
