Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Classification of the Simple Modular
Lie Algebras: VI. Solving the Final Case


Author: H. Strade
Journal: Trans. Amer. Math. Soc. 350 (1998), 2553-2628
MSC (1991): Primary 17B20
DOI: https://doi.org/10.1090/S0002-9947-98-01770-X
MathSciNet review: 1390047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the structure of simple Lie algebras $L$ over an algebraically closed field of characteristic $p>7$. Let $T$ denote a torus in the $p$-envelope of $L$ in $\operatorname{Der}L$ of maximal dimension. We classify all $L$ for which every 1-section with respect to every such torus $T$ is solvable. This settles the remaining case of the classification of these algebras.


References [Enhancements On Off] (What's this?)

  • 1. G.M. Benkart and T. Gregory, Graded Lie algebras with classical reductive null component, Math. Ann. 285 (1989), 85-98. MR 90j:17051
  • 2. R.E. Block and R.L. Wilson, The simple Lie-$p$-algebras of rank two, Ann. of Math. 115 (1982), 93-168. MR 83j:17008
  • 3. R.E. Block and R.L. Wilson, Classification of the restricted simple Lie algebras, J. Algebra 114 (1988), 115-259. MR 89e:17014
  • 4. G.M. Benkart et al., Isomorphism classes of Hamiltonian Lie algebras. In: G.M. Benkart and J.M. Osborn (eds.), Lie Algebras, Madison 1987, Lecture Notes in Math. 1373 (1989), Springer, Berlin-New York, 42 - 57. MR 91e:17014
  • 5. H.J. Chang, Über Wittsche Lie-Ringe, Abh. Math. Sem. Universität Hamburg 14 (1941), 151 - 184. MR 3:101a
  • 6. M.J. Celousov, Derivations of Lie algebras of Cartan type, Izv. Vys[??]s. U[??]cebn. Zaved. Matematika 98 (1970), 126 - 134. MR 43:6273
  • 7. V.G. Kac, Description of filtered Lie algebras with which graded Lie algebras of Cartan type are associated, Izv. Akad. Nauk SSSR Ser. Math. 38 (1974), 800 - 834; Errata, 40 (1976), 1415 [Russian]; Math. USSR-Izv. 8 (1974), 801 - 835; Errata, 10 (1976), 1339 [English transl.] MR 51:5685; MR 55:3008
  • 8. N.A. Koreshkov, On irreducible representations of Hamiltonian algebras of dimension $p^2-2$, Izvestija VUZ. Matematika 22 (1978), 37 - 46. [Russian]; Soviet Math (Iz. VUZ) 22 (1978), no. 10, 28-34 [English transl.] MR 81c:17020
  • 9. M.I. Kuznetsov, Simple modular Lie algebras with a solvable maximal subalgebra, Mat. Sb. 101 (1976), 77 - 86 [Russian]; Math. USSR-Sb. 30 (1976), 68 - 76 [English transl.] MR 54:1035b
  • 10. R.H. Oehmke, On a class of Lie algebras, Proc. Amer. Math. Soc. 16 (1965), 1107 - 1113 MR 33:157
  • 11. H. Strade, The Absolute Toral Rank of a Lie Algebra. In: G.M. Benkart and J.M. Osborn (eds.), Lie Algebras, Madison 1987, Lecture Notes in Math. 1373 (1989), Springer, Berlin-New York, 1-28. MR 90m:17029
  • 12. H. Strade, The Classification of the Simple Modular Lie Algebras: I. Determination of the two-sections, Ann. of Math. 130 (1989), 643-677. MR 91a:17023
  • 13. H. Strade, Lie Algebra Representations of Dimension $< p^2$, Trans. Amer. Math. Soc. 319 (1990), 689-709. MR 90j:17015
  • 14. H. Strade, The Classification of the Simple Modular Lie Algebras: II. The Toral Structure, J. Algebra 151 (1992), 425-475. MR 93j:17042
  • 15. H. Strade, New Methods for the Classification of Simple Modular Lie Algebras, Mat. Sbornik 181 (1990), 1391-1402 [Russian]; Math. USSR Sbornik 71 (1992), 235-245 [English transl.] MR 92d:17020
  • 16. H. Strade, Representations of the $(p^2-1)$-dimensional Lie Algebras of R.E. Block, Can. J. Math. 43 (1991), 580-616. MR 92g:17025
  • 17. H. Strade, The Classification of the Simple Modular Lie Algebras: III. Solution of the Classical Case, Ann. of Math. 133 (1991), 577-604. MR 92g:17024
  • 18. H. Strade, The Classification of the Simple Modular Lie Algebras: IV. Determining the Associated Graded Algebra, Ann. of Math. 138 (1993), 1-59. MR 94k:17039
  • 19. H. Strade, The Classification of the Simple Modular Lie Algebras: V. Algebras with Hamiltonian Two-sections, Abh. Math. Sem. Univ. Hamburg 64 (1994), 167 - 202. MR 95h:17023
  • 20. H. Strade, Representations of Derivation Simple Algebras, AMS1P Studies in Advanced Mathematics 4 (1997), 127-142.
  • 21. H. Strade and R. Farnsteiner, Modular Lie Algebras and Their Representations, Marcel Dekker Textbooks and Monographs 116 (1988). MR 89h:17021
  • 22. H. Strade and R.L. Wilson, Classification of Simple Lie Algebras over Algebraically Closed Fields of Prime Characteristic, Bull. Amer. Math. Soc. 24 (1991), 357-362. MR 91i:17026
  • 23. B.Yu. Weisfeiler, On the Structure of the Minimal Ideals of Some Graded Lie Algebras in Characteristic $p > 0$, J. Algebra 53 (1978), 344-361. MR 80b:17011
  • 24. B.Yu. Weisfeiler, On subalgebras of simple Lie algebras of characteristic $p>0$, Trans. Amer. Math. Soc. 286 (1984), 471 - 503. MR 86h:17012
  • 25. R.L. Wilson, Simple Lie Algebras of Toral Rank One, Trans. Amer. Math. Soc. 236 (1978), 287-295. MR 57:3205
  • 26. R.L. Wilson, Simple Lie Algebras of Type $S$, J. Algebra 62 (1980), 292 - 298. MR 81c:17019
  • 27. D.J. Winter, On the toral structure of Lie $p$-algebras, Acta Math. 123 (1969), 69 -81. MR 40:4326

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 17B20

Retrieve articles in all journals with MSC (1991): 17B20


Additional Information

H. Strade
Affiliation: Mathematische Seminar Universität Hamburg, 20146 Hamburg, Germany
Email: strade@math.uni-hamburg.de

DOI: https://doi.org/10.1090/S0002-9947-98-01770-X
Received by editor(s): July 2, 1995
Received by editor(s) in revised form: December 10, 1995
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society