Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Generators and relations
of direct products of semigroups


Authors: E. F. Robertson, N. Ruskuc and J. Wiegold
Journal: Trans. Amer. Math. Soc. 350 (1998), 2665-2685
MSC (1991): Primary 20M05
MathSciNet review: 1451614
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to give necessary and sufficient conditions for the direct product of two semigroups to be finitely generated, and also for the direct product to be finitely presented. As a consequence we construct a semigroup $S$ of order 11 such that $S\times T$ is finitely generated but not finitely presented for every finitely generated infinite semigroup $T$. By way of contrast we show that, if $S$ and $T$ belong to a wide class of semigroups, then $S\times T$ is finitely presented if and only if both $S$ and $T$ are finitely presented, exactly as in the case of groups and monoids.


References [Enhancements On Off] (What's this?)

  • 1. C. M. Campbell, E. F. Robertson, N. Ruškuc, and R. M. Thomas, Reidemeister-Schreier type rewriting for semigroups, Semigroup Forum 51 (1995), no. 1, 47–62. MR 1336997, 10.1007/BF02573619
  • 2. C.M. Campbell, E.F. Robertson, N. Ruskuc and R.M. Thomas, On subsemigroups of finitely presented semigroups, J. Algebra 180 (1996), 1-21. CMP 96:08
  • 3. C.M. Campbell, E.F. Robertson, N. Ruskuc and R.M. Thomas, Presentations for subsemigroups-applications to ideals of semigroups, J. Pure Appl. Algebra, to appear.
  • 4. C. M. Campbell, E. F. Robertson, N. Ruškuc, and R. M. Thomas, On subsemigroups and ideals in free products of semigroups, Internat. J. Algebra Comput. 6 (1996), no. 5, 571–591. MR 1419132, 10.1142/S0218196796000325
  • 5. Keresztély Corrádi and Sándor Szabó, A new proof of Rédei’s theorem, Pacific J. Math. 140 (1989), no. 1, 53–61. MR 1019066
  • 6. P.A. Grillet, A short proof of Redei's theorem, Semigroup Forum 46 (1993), 126-127. CMP 93:04
  • 7. P. Hall, The eulerian functions of a group, Quart. J. Math. 7 (1936), 134-151.
  • 8. Peter M. Higgins, Techniques of semigroup theory, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. With a foreword by G. B. Preston. MR 1167445
  • 9. J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
  • 10. John M. Howie and N. Ruškuc, Constructions and presentations for monoids, Comm. Algebra 22 (1994), no. 15, 6209–6224. MR 1302999, 10.1080/00927879408825184
  • 11. Andrzej Jura, Coset enumeration in a finitely presented semigroup, Canad. Math. Bull. 21 (1978), no. 1, 37–46. MR 0486223
  • 12. Andrzej Jura, Determining ideals of a given finite index in a finitely presented semigroup, Demonstratio Math. 11 (1978), no. 3, 813–827. MR 522892
  • 13. Andrzej Jura, Some remarks on nonexistence of an algorithm for finding all ideals of a given finite index in a finitely presented semigroup, Demonstratio Math. 13 (1980), no. 2, 573–578. MR 599283
  • 14. Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. MR 0207802
  • 15. B.H. Neumann, Some remarks on semigroup presentations, Canad. J. Math. 19 (1967), 1018-1026; 20 (1968), 511. MR 36:2677,5703
  • 16. S.J. Pride, Geometric methods in combinatorial semigroup theory, Semigroups, Formal Languages and Groups, J. Fountain (ed.), Kluwer, Dordrecht, 1995, pp. 215-232.
  • 17. László Rédei, The theory of finitely generated commutative semigroups, Translation edited by N. Reilly, Pergamon Press, Oxford-Edinburgh-New York, 1965. MR 0188322
  • 18. Edmund F. Robertson and Yusuf Ünlü, On semigroup presentations, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 55–68. MR 1200187, 10.1017/S0013091500005897
  • 19. N. Ruškuc, Matrix semigroups—generators and relations, Semigroup Forum 51 (1995), no. 3, 319–333. MR 1351958, 10.1007/BF02573640
  • 20. N. Ruskuc, Semigroup Presentations, Ph.D. Thesis, University of St Andrews, St Andrews, Scotland, 1995.
  • 21. N. Ruskuc, On large subsemigroups and finiteness conditions of semigroups, Proc. London Math. Soc., to appear.
  • 22. N. Ruskuc and R.M. Thomas, Syntactic and Rees indices of subsemigroups, submitted.
  • 23. Charles C. Sims, Computation with finitely presented groups, Encyclopedia of Mathematics and its Applications, vol. 48, Cambridge University Press, Cambridge, 1994. MR 1267733
  • 24. J.A. Todd and H.S.M. Coxeter, A practical method for enumerating the cosets of a finite abstract group, Proc. Edinburgh Math. Soc. 5 (1936), 26-34.
  • 25. T.G. Walker, Semigroup Enumeration - Computer Implementation and Applications,
    Ph.D. Thesis, University of St Andrews, St Andrews, Scotland, 1992.
  • 26. James Wiegold, Growth sequences of finite groups. III, J. Austral. Math. Soc. Ser. A 25 (1978), no. 2, 142–144. MR 499355

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 20M05

Retrieve articles in all journals with MSC (1991): 20M05


Additional Information

E. F. Robertson
Affiliation: Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, Scotland
Email: efr@st-and.ac.uk

N. Ruskuc
Affiliation: Mathematical Institute, University of St Andrews, St Andrews KY16 9SS, Scotland
Email: nr1@st-and.ac.uk

J. Wiegold
Affiliation: School of Mathematics, University of Wales, College of Cardiff, Senghenydd Road, Cardiff, CF2 4AG, Wales
Email: SMAJW@cardiff.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-98-02074-1
Received by editor(s): September 24, 1996
Article copyright: © Copyright 1998 American Mathematical Society