Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the connection
between the existence of zeros
and the asymptotic behavior of resolvents
of maximal monotone operators
in reflexive Banach spaces


Author: Athanassios G. Kartsatos
Journal: Trans. Amer. Math. Soc. 350 (1998), 3967-3987
MSC (1991): Primary 47H17; Secondary 47H05, 47H10
DOI: https://doi.org/10.1090/S0002-9947-98-02033-9
MathSciNet review: 1443880
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A more systematic approach is introduced in the theory of zeros of maximal monotone operators $T:X\supset D(T)\to 2^{X^{*}}$, where $X$ is a real Banach space. A basic pair of necessary and sufficient boundary conditions is given for the existence of a zero of such an operator $T$. These conditions are then shown to be equivalent to a certain asymptotic behavior of the resolvents or the Yosida resolvents of $T$. Furthermore, several interesting corollaries are given, and the extendability of the necessary and sufficient conditions to the existence of zeros of locally defined, demicontinuous, monotone mappings is demonstrated. A result of Guan, about a pathwise connected set lying in the range of a monotone operator, is improved by including non-convex domains. A partial answer to Nirenberg's problem is also given. Namely, it is shown that a continuous, expansive mapping $T$ on a real Hilbert space $H$ is surjective if there exists a constant $\alpha \in (0,1)$ such that $\langle Tx-Ty,x-y\rangle \ge -\alpha \|x-y\|^{2},~x,~y\in H.$ The methods for these results do not involve explicit use of any degree theory.


References [Enhancements On Off] (What's this?)

  • 1. M. Altman, A fixed point theorem in Hilbert space, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 89-92. MR 19:297b
  • 2. M. Altman, A fixed point theorem in Banach space, Bull. Acad. Polon. Sci. Cl. III 5 (1957), 17-22. MR 19:297a
  • 3. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1975. MR 52:11166
  • 4. H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl Math. 23 (1970), 123-144. MR 41:2454
  • 5. F. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Appl. Math., 18, Part 2, Providence, 1976. MR 53:8982
  • 6. F. Browder, The degree of mapping and its generalizations, Contemp. Math. 21 (1983), 15-40. MR 85e:47086
  • 7. K. C. Chang and S. Li, A remark on expanding maps, Proc. Amer. Math. Soc. 85 (1982), 583-585. MR 83j:47045
  • 8. Z. Ding and A. G. Kartsatos, Nonzero solutions of nonlinear equations involving compact perturbations of accretive operators in Banach spaces, Nonlinear Anal. TMA 25 (1995), 1333-1342. MR 97d:47072
  • 9. Z. Ding and A. G. Kartsatos, p-regular mappings and alternative results for perturbations of $m$-accretive operators in Banach spaces, Topol. Meth. Nonlinear Anal. 5 (1995), 291-304. MR 96k:47107
  • 10. Z. Guan, Ranges of operators of monotone type in Banach spaces, J. Math. Anal. Appl. 174 (1993), 256-264. MR 95b:47086
  • 11. Z. Guan, Solvability of semilinear equations with compact perturbations of operators of monotone type, Proc. Amer. Math. Soc. 121 (1994), 93-102. MR 94g:47080
  • 12. Z. Guan and A. G. Kartsatos, Solvability of nonlinear equations with coercivity generated by compact perturbations of $m$-accretive operators in Banach spaces, Houston J. Math. 21 (1995), 149-188. MR 96c:47099
  • 13. Z. Guan and A. G. Kartsatos, On the eigenvalue problem for perturbations of nonlinear accretive and monotone operators in Banach spaces, Nonlinear Anal. TMA 27 (1996), 125-141. MR 97b:47053
  • 14. Z. Guan and A. G. Kartsatos, Ranges of perturbed maximal monotone and $m$-accretive operators in Banach spaces, Trans. Amer. Math. Soc. 347 (1995), 2403-2435. MR 95i:47096
  • 15. N. Hirano and A. K. Kalinde, On perturbations of $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 1183-1190. MR 96g:47058
  • 16. D. R. Kaplan and A. G. Kartsatos, Ranges of sums and control of nonlinear evolutions with preassigned responses, J. Optim. Theory Appl. 81 (1994), 121-141. MR 96a:93008
  • 17. A. G. Kartsatos, Some mapping theorems for accretive operators in Banach spaces, J. Math. Anal. Appl 82 (1981), 169-183. MR 82j:47068
  • 18. A. G. Kartsatos, Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, Proceedings of the First World Congress of Nonlinear Analysts, Tampa, Florida, 1992, vol. III, Walter De Gruyter, New York, 1995, pp. 2197-2222. MR 97a:00029
  • 19. A. G. Kartsatos, On compact perturbations and compact resolvents of nonlinear m-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), 1189-1199. MR 94c:47076
  • 20. A. G. Kartsatos, Sets in the ranges of sums for perturbations of nonlinear $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 123 (1995), 145-156. MR 95c:47072
  • 21. A. G. Kartsatos, On the construction of methods of lines for functional evolutions in general Banach spaces, Nonlinear Anal. TMA 25 (1995), 1321-1331. MR 96h:34164
  • 22. A. G. Kartsatos, A compact evolution operator generated by a time-dependent $m$-accretive operator in a general Banach space, Math. Ann. 302 (1995), 473-487. MR 96c:47104
  • 23. A. G. Kartsatos, Sets in the ranges of nonlinear accretive operators in Banach spaces, Studia Math. 114 (1995), 261-273. MR 97h:47053
  • 24. A. G. Kartsatos, Degree theoretic solvability of inclusions involving perturbations of nonlinear $m$-accretive operators in Banach spaces, Yokohama Math. J. 42 (1994), 171-182. MR 96c:47098
  • 25. A. G. Kartsatos, On the perturbation theory of $m$-accretive operators in Banach spaces, Proc. Amer. Math. Soc. 124 (1996), 1811-1820. MR 96h:47070
  • 26. A. G. Kartsatos, New results in the perturbation theory of maximal monotone and $m$-accretive operators in Banach spaces, Trans. Amer. Math. Soc. 348 (1996), 1663-1707. MR 96j:47050
  • 27. A. G. Kartsatos and X. Liu, Nonlinear equations involving compact perturbations of $m$-accretive operators in Banach spaces, Nonlinear Anal. TMA 24 (1995), 469-492. MR 96c:47079
  • 28. A. G. Kartsatos and R. D. Mabry, Controlling the space with pre-assigned responses, J. Optim. Theory Appl. 54 (1987), 517-540. MR 88j:49024
  • 29. W. A. Kirk and R. Schöneberg, Zeros of $m$-accretive operators in Banach spaces, Israel J. Math. 35 (1980), 1-8. MR 82a:47049
  • 30. C. Morales, Nonlinear equations involving $m$-accretive operators, J. Math. Anal. Appl. 97 (1983), 329-336. MR 85d:47055
  • 31. C. Morales, Existence theorems for demicontinuous accretive operators in Banach spaces, Houston J. Math. 10 (1984), 535-543. MR 86d:47063
  • 32. J. M. Morel and H. Steinlein, On a problem of Nirenberg concerning expanding maps, J. Funct. Anal. 59 (1984), 145-150. MR 86b:47116
  • 33. L. Nirenberg, Topics in nonlinear functional analysis, Lecture Notes, Courant Inst., New York Univ., New York, 1974. MR 58:7672
  • 34. J. A. Park, Invariance of domain theorem for demicontinuous mappings of type (S$_{+}$), Bull. Korean Math. Soc. 29 (1992), 81-87. MR 93d:47134
  • 35. D. Pascali and S. Sburlan, Nonlinear mappings of monotone type, Sijthoff and Noordhoff Intern. Publ., Bucure\c{s}ti, Romania, and Sijthoff & Noordhoff, Alphen aan den Rijn, 1978. MR 80g:47056
  • 36. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. MR 82a:47050
  • 37. S. Reich and R. Torrejón, Zeros of accretive operators, Comment. Math. Univ. Carolinae 21 (1980), 619-625. MR 81k:47075
  • 38. I. V. Skrypnik, Methods for analysis of nonlinear elliptic boundary value problems, Transl. Math. Monographs, 139, A.M.S., Providence, 1994. MR 95i:35109
  • 39. G. H. Yang, The ranges of nonlinear mappings of monotone type, J. Math. Anal. Appl. 173 (1993), 165-172. MR 94b:47069
  • 40. E. Zeidler, Nonlinear Functional Analysis and its Applications, II/B, Springer-Verlag, New York, 1990. MR 91b:47002

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 47H17, 47H05, 47H10

Retrieve articles in all journals with MSC (1991): 47H17, 47H05, 47H10


Additional Information

Athanassios G. Kartsatos
Affiliation: Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700
Email: hermes@tarski.math.usf.edu

DOI: https://doi.org/10.1090/S0002-9947-98-02033-9
Keywords: Maximal monotone operator, resolvent, Yosida resolvent, demicontinuous monotone operator, existence of zeros, Nirenberg's problem
Received by editor(s): March 6, 1995
Received by editor(s) in revised form: November 7, 1996
Article copyright: © Copyright 1998 American Mathematical Society

American Mathematical Society