Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of indecomposable injectives
in generic representation theory


Author: Geoffrey M. L. Powell
Journal: Trans. Amer. Math. Soc. 350 (1998), 4167-4193
MSC (1991): Primary 18G05, 20G40, 55S10
DOI: https://doi.org/10.1090/S0002-9947-98-02125-4
MathSciNet review: 1458333
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper considers the structure of the injective objects $I_{V_{n}}$ in the category $\mathcal F$ of functors between ${\mathbb F}_2$-vector spaces. A co-Weyl object $J_\lambda$ is defined, for each simple functor $F_\lambda$ in $\mathcal F$. A functor is defined to be $J$-good if it admits a finite filtration of which the quotients are co-Weyl objects. Properties of $J$-good functors are considered and it is shown that the indecomposable injectives in $\mathcal F$ are $J$-good. A finiteness result for proper sub-functors of co-Weyl objects is proven, using the polynomial filtration of the shift functor $\tilde\Delta: \mathcal F \rightarrow \mathcal F$. This research is motivated by the Artinian conjecture due to Kuhn, Lannes and Schwartz.


References [Enhancements On Off] (What's this?)

  • [CPS] E. Cline, B. Parshall and L. Scott, Finite dimensional algebras and highest weight categories, J. Reine angew. 391 (1988), 85-99. MR 90d:18005
  • [CR] C.W. Curtis and I. Reiner, Methods of Representation Theory, Volume I, (1981), John Wiley and Sons. MR 90k:20001
  • [EM] S. Eilenberg and S. Mac Lane, On the groups $H(\Pi, n)$, II, Ann. Math. 60, (1954), 49-139. MR 16:392
  • [FLS] V. Franjou, J. Lannes and L. Schwartz, Autour de la cohomologie de Mac Lane des corps finis, Invent. Math. 115 (1994), 513-538. MR 95d:19002
  • [FP] E.M. Friedlander and B. Parshall, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), 235-253. MR 87c:20080
  • [G] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448. MR 38:1144
  • [HHS] J.C. Harris, T. Hunter and R.J. Shank, Steenrod algebra module maps from $H^*(B(Z/p)^n)$ to $H^*(B(Z/p)^s)$, Proc. Amer. Math. Soc. 112 (1991), 245-257. MR 91i:55023
  • [HK] J.C. Harris and N.J. Kuhn, Stable decompositions of classifying spaces of finite abelian $p$-groups, Math. Proc. Camb. Phil. Soc. 103 (1988), 427-449. MR 89d:55021
  • [HS] J.C. Harris and R.J. Shank Lannes, $T$-functor on summands of $H^{*}(B (\textbf{Z}/p)^{s} )$, Trans. Amer. Math. Soc. 333 (1992), 579-606. MR 92m:55024
  • [H] H.-W. Henn, Finiteness properties of injective resolutions of certain unstable modules over the Steenrod algebra and applications, Math. Ann. 291 (1991), 191-203. MR 92i:55016
  • [HLS] H.-W. Henn, J. Lannes and L. Schwartz, The categories of unstable modules and unstable algebras over the Steenrod algebra modulo nilpotent objects, Amer. J. Math. 115 (1993), 1053-1106. MR 94i:55024
  • [J] J.C. Jantzen, Representations of Algebraic Groups, Volume 131, Pure. Appl. Math., Academic Press, (1987). MR 89c:20001
  • [KK] P. Krason and N.J. Kuhn, On embedding polynomial functors in symmetric powers, J. Algebra 163, (1994), 281-294. MR 95e:20058
  • [K1] N.J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra: I, Amer. J. Math. 116 (1993), 327-360. MR 95c:55022
  • [K2] N.J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra: II, K-Theory 8 (1994), 395-426. MR 95k:55038
  • [K3] N.J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra: III, K-Theory 9 (1995), 273-303. MR 97c:55026
  • [K4] N.J. Kuhn, On the Morava $K$-theories of some classifying spaces, Trans. Amer. Math. Soc. 304 (1987), 285-298. MR 89d:55013
  • [L] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un $p$-groupe abélien élémentaire, Publ. I.H.E.S. 75 (1992), 135-244. MR 93j:55019
  • [M] S. Martin, Schur Algebras and Representation Theory, Cambridge Tracts in Mathematics 112 (1993), Cambridge University Press. MR 95f:20071
  • [MP] S. Mitchell and S. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), 285-298. MR 85f:55005
  • [Pi] L. Piriou, Thèse de doctorat, Université de Paris VII, (1995).
  • [PS] G.M.L. Powell with an Appendix by L. Schwartz, The Artinian conjecture for $I\otimes I$, To appear, J. Pure Appl. Alg.
  • [P] G.M.L. Powell, Polynomial filtrations and Lannes' $T$-functor, $K$-Theory 13 (1998), 279-304. CMP 98:10
  • [P1] G.M.L. Powell, The structure of $\overline{I} \otimes \Lambda ^n$ in generic representation theory, J. Alg. 194 (1997), 455-465. CMP 97:17

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 18G05, 20G40, 55S10

Retrieve articles in all journals with MSC (1991): 18G05, 20G40, 55S10


Additional Information

Geoffrey M. L. Powell
Affiliation: LAGA, Institut Galilée, Université Paris 13, 93430 Villetaneuse, France
Email: powell@math.univ-paris13.fr

DOI: https://doi.org/10.1090/S0002-9947-98-02125-4
Received by editor(s): December 5, 1996
Additional Notes: The author was supported by a Royal Society (GB) ESEP fellowship at the Institut Galilée, Université de Paris-Nord, France during the preparation of this work. The final version was prepared whilst the author was a visitor at the University of Virginia, Charlottesville
Article copyright: © Copyright 1998 American Mathematical Society