The singular limit of

a vector-valued reaction-diffusion process

Authors:
Lia Bronsard and Barbara Stoth

Journal:
Trans. Amer. Math. Soc. **350** (1998), 4931-4953

MSC (1991):
Primary 35B25, 35K57

MathSciNet review:
1443865

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the asymptotic behaviour of the solution to the vector-valued reaction-diffusion equation

where . We assume that the the potential depends only on the modulus of and vanishes along two concentric circles. We present a priori estimates for the solution , and, in the spatially radially symmetric case, we show rigorously that in the singular limit as , two phases are created. The interface separating the bulk phases evolves by its mean curvature, while evolves according to a harmonic map flow on the respective circles, coupled across the interfaces by a jump condition in the gradient.

**[AL]**Anca Tomescu and F. M. G. Tomescu,*The Galerkin solution of the general mixed problem for the parabolic equation*, Rev. Roumaine Sci. Tech. Sér. Électrotech. Énergét.**28**(1983), no. 2, 127–136. MR**738609****[BF]**M. S. Berger and L. E. Fraenkel,*On the asymptotic solution of a nonlinear Dirichlet problem*, J. Math. Mech.**19**(1969/1970), 553–585. MR**0252813****[BK1]**Lia Bronsard and Robert V. Kohn,*On the slowness of phase boundary motion in one space dimension*, Comm. Pure Appl. Math.**43**(1990), no. 8, 983–997. MR**1075075**, 10.1002/cpa.3160430804**[BK2]**Lia Bronsard and Robert V. Kohn,*Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics*, J. Differential Equations**90**(1991), no. 2, 211–237. MR**1101239**, 10.1016/0022-0396(91)90147-2**[BR]**Lia Bronsard and Fernando Reitich,*On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation*, Arch. Rational Mech. Anal.**124**(1993), no. 4, 355–379. MR**1240580**, 10.1007/BF00375607**[BSt]**L. Bronsard and B. Stoth (1997),*Volume Preserving Mean Curvature Flow as a Limit of a Nonlocal Ginzburg-Landau Equation*, SIAM J. Math. Anal.**28**, 769-807. CMP**97:13****[C]**Yun Mei Chen,*The weak solutions to the evolution problems of harmonic maps*, Math. Z.**201**(1989), no. 1, 69–74. MR**990189**, 10.1007/BF01161995**[CS]**Yun Mei Chen and Michael Struwe,*Existence and partial regularity results for the heat flow for harmonic maps*, Math. Z.**201**(1989), no. 1, 83–103. MR**990191**, 10.1007/BF01161997**[Lu]**Stephan Luckhaus,*Solutions for the two-phase Stefan problem with the Gibbs-Thomson law for the melting temperature*, European J. Appl. Math.**1**(1990), no. 2, 101–111. MR**1117346**, 10.1017/S0956792500000103**[RSK]**Jacob Rubinstein, Peter Sternberg, and Joseph B. Keller,*Reaction-diffusion processes and evolution to harmonic maps*, SIAM J. Appl. Math.**49**(1989), no. 6, 1722–1733. MR**1025956**, 10.1137/0149104**[S1]**Peter Sternberg,*The effect of a singular perturbation on nonconvex variational problems*, Arch. Rational Mech. Anal.**101**(1988), no. 3, 209–260. MR**930124**, 10.1007/BF00253122**[S2]**Peter Sternberg,*Vector-valued local minimizers of nonconvex variational problems*, Rocky Mountain J. Math.**21**(1991), no. 2, 799–807. Current directions in nonlinear partial differential equations (Provo, UT, 1987). MR**1121542**, 10.1216/rmjm/1181072968**[St1]**B. Stoth (1996),*A Sharp Interface Limit of the Phase Field Equations: One-dimensional Axisymmetric*, European J. Appl. Math.**7**(1996), 603-633. CMP**97:06****[St2]**Barbara E. E. Stoth,*Convergence of the Cahn-Hilliard equation to the Mullins-Sekerka problem in spherical symmetry*, J. Differential Equations**125**(1996), no. 1, 154–183. MR**1376064**, 10.1006/jdeq.1996.0028

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
35B25,
35K57

Retrieve articles in all journals with MSC (1991): 35B25, 35K57

Additional Information

**Lia Bronsard**

Affiliation:
Department of Mathematics, McMaster University, Hamilton, Ont. L8S 4K1, Canada

Email:
bronsard@math.mcmaster.ca

**Barbara Stoth**

Affiliation:
IAM, Universität Bonn, 53115 Bonn, Deutschland

Email:
bstoth@iam.uni-bonn.de

DOI:
https://doi.org/10.1090/S0002-9947-98-02020-0

Received by editor(s):
November 17, 1995

Received by editor(s) in revised form:
October 15, 1996

Article copyright:
© Copyright 1998
American Mathematical Society