Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Existence and uniqueness for a degenerate parabolic equation with $L^{1}$-data


Authors: F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo
Journal: Trans. Amer. Math. Soc. 351 (1999), 285-306
MSC (1991): Primary 35K65, 47H20
MathSciNet review: 1433108
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study existence and uniqueness of solutions for the boundary-value problem, with initial datum in $L^{1}(\Omega )$,

\begin{equation*}u_{t} = \mathrm{div} \ {\hbox{$\mathbf a$}}(x,Du) \quad \text{in } (0, \infty ) \times \Omega, \end{equation*}

\begin{equation*}-{\frac{{\partial u} }{{\partial \eta _{a}}}} \in \beta (u) \quad \text{on } (0, \infty ) \times \partial \Omega,\end{equation*}

\begin{equation*}u(x, 0) = u_{0}(x) \quad \text{in }\Omega ,\end{equation*}

where a is a Carathéodory function satisfying the classical Leray-Lions hypothesis, $\partial / {\partial \eta _{a}}$ is the Neumann boundary operator associated to ${\hbox{$\mathbf a$}}$, $Du$ the gradient of $u$ and $\beta $ is a maximal monotone graph in ${\mathbb{R}}\times {\mathbb{R}}$ with $0 \in \beta (0)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35K65, 47H20

Retrieve articles in all journals with MSC (1991): 35K65, 47H20


Additional Information

F. Andreu
Affiliation: Departamento de Análisis Matemático, Universitat de València, 46100 Burjassot, Valencia, Spain
Email: Fuensanta.Andreu@uv.es

J. M. Mazón
Affiliation: Departamento de Análisis Matemático, Universitat de València, 46100 Burjassot, Valencia, Spain
Email: Mazon@uv.es

S. Segura de León
Affiliation: Departamento de Análisis Matemático, Universitat de València, 46100 Burjassot, Valencia, Spain
Email: Sergio.Segura@uv.es

J. Toledo
Affiliation: Departamento de Análisis Matemático, Universitat de València, 46100 Burjassot, Valencia, Spain
Email: Jose.Toledo@uv.es

DOI: http://dx.doi.org/10.1090/S0002-9947-99-01981-9
PII: S 0002-9947(99)01981-9
Keywords: Non-linear parabolic equations, non-linear boundary conditions, $p$-Laplacian, accretive operators, mild solutions
Received by editor(s): September 11, 1995
Received by editor(s) in revised form: December 2, 1996
Additional Notes: This research has been partially supported by DGICYT, Project PB94-0960
Article copyright: © Copyright 1999 American Mathematical Society