On the nonvanishing of cubic twists of automorphic series
Author:
Xiaotie She
Journal:
Trans. Amer. Math. Soc. 351 (1999), 10751094
MSC (1991):
Primary 11F66; Secondary 11F70, 11M41, 11N75
MathSciNet review:
1451616
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a normalised new form of weight for over and , its base change lift to . A sufficient condition is given for the nonvanishing at the center of the critical strip of infinitely many cubic twists of the function of . There is an algorithm to check the condition for any given form. The new form of level is used to illustrate our method.
 1.
Tom
M. Apostol, Introduction to analytic number theory,
SpringerVerlag, New YorkHeidelberg, 1976. Undergraduate Texts in
Mathematics. MR
0434929 (55 #7892)
 2.
Daniel
Bump, Solomon
Friedberg, and Jeffrey
Hoffstein, Eisenstein series on the metaplectic group and
nonvanishing theorems for automorphic 𝐿functions and their
derivatives, Ann. of Math. (2) 131 (1990),
no. 1, 53–127. MR 1038358
(92e:11053), http://dx.doi.org/10.2307/1971508
 3.
Daniel
Bump, Solomon
Friedberg, and Jeffrey
Hoffstein, Nonvanishing theorems for 𝐿functions of modular
forms and their derivatives, Invent. Math. 102
(1990), no. 3, 543–618. MR 1074487
(92a:11058), http://dx.doi.org/10.1007/BF01233440
 4.
Daniel
Bump and Jeffrey
Hoffstein, Cubic metaplectic forms on 𝐺𝐿(3),
Invent. Math. 84 (1986), no. 3, 481–505. MR 837524
(87i:11059), http://dx.doi.org/10.1007/BF01388743
 5.
Solomon
Friedberg and Jeffrey
Hoffstein, Nonvanishing theorems for automorphic
𝐿functions on 𝐺𝐿(2), Ann. of Math. (2)
142 (1995), no. 2, 385–423. MR 1343325
(96e:11072), http://dx.doi.org/10.2307/2118638
 6.
S. Friedberg, On the imaginary quadratic DoiNaganuma lifting of modular forms of arbitrary level, Nagoya Math. J. 92 120 (1983). MR 85f:10031
 7.
D.
Goldfeld, J.
Hoffstein, and S.
J. Patterson, On automorphic functions of halfintegral weight with
applications to elliptic curves, Number theory related to
Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math.,
vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 153–193.
MR 685295
(84i:10031)
 8.
I.
S. Gradshteyn and I.
M. Ryzhik, Table of integrals, series, and products, 5th ed.,
Academic Press, Inc., Boston, MA, 1994. Translation edited and with a
preface by Alan Jeffrey. MR 1243179
(94g:00008)
 9.
Kenneth
F. Ireland and Michael
I. Rosen, A classical introduction to modern number theory,
Graduate Texts in Mathematics, vol. 84, SpringerVerlag, New
YorkBerlin, 1982. Revised edition of Elements of number theory. MR 661047
(83g:12001)
 10.
Henryk
Iwaniec, On the order of vanishing of modular 𝐿functions
at the critical point, Sém. Théor. Nombres Bordeaux (2)
2 (1990), no. 2, 365–376. MR 1081731
(92h:11040)
 11.
Daniel
B. Lieman, Nonvanishing of 𝐿series associated to cubic
twists of elliptic curves, Ann. of Math. (2) 140
(1994), no. 1, 81–108. MR 1289492
(95g:11044), http://dx.doi.org/10.2307/2118541
 12.
K. Murty and R. Murty, Mean values of derivatives of modular Lseries, Annals of Math. 133 447475 (1991).
 13.
S.
J. Patterson, A cubic analogue of the theta series. II, J.
Reine Angew. Math. 296 (1977), 217–220. MR 0563069
(58 #27795b)
 14.
David
E. Rohrlich, Nonvanishing of 𝐿functions for
𝐺𝐿(2), Invent. Math. 97 (1989),
no. 2, 381–403. MR 1001846
(90g:11062), http://dx.doi.org/10.1007/BF01389047
 15.
Goro
Shimura, On the derivatives of theta functions and modular
forms, Duke Math. J. 44 (1977), no. 2,
365–387. MR 0466028
(57 #5911)
 16.
JeanLoup
Waldspurger, Correspondances de Shimura et quaternions, Forum
Math. 3 (1991), no. 3, 219–307 (French). MR 1103429
(92g:11054), http://dx.doi.org/10.1515/form.1991.3.219
 1.
 Tom M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, SpringerVerlag (1976). MR 55:7892
 2.
 D. Bump, S. Friedberg and J. Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic Lfunctions and their derivatives, Annals of Math. 131 53127 (1990). MR 92e:11053
 3.
 D. Bump, S. Friedberg and J. Hoffstein, Nonvanishing theorems for Lfunctions of modular forms and their derivatives, Inventiones Math. 102 543618 (1990). MR 92a:11058
 4.
 D. Bump and J. Hoffstein, Cubic metaplectic forms on GL(3), Inventiones Math. 84 481505 (1986). MR 87i:11059
 5.
 S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic Lfunctions on GL(2), Annals of Math. 142 385423 (1995). MR 96e:11072
 6.
 S. Friedberg, On the imaginary quadratic DoiNaganuma lifting of modular forms of arbitrary level, Nagoya Math. J. 92 120 (1983). MR 85f:10031
 7.
 D. Goldfeld, J. Hoffstein and S. Patterson, On automorphic functions of halfintegral weight with applications to elliptic curves, in Number Theory related to Fermat's Last Theorem (N. Koblitz, ed.), Birkhauser, Boston, Basel, Stuttgart, 153193 (1983). MR 84i:10031
 8.
 I. Gradshteyn and I. Ryzhik, Tables of integral series and products, Fifth edition. MR 94g:00008
 9.
 K. Ireland and M. Rosen, A classical introduction to modern number theory, Graduate Texts in Mathematics, SpringerVerlag 84 (1982). MR 83g:12001
 10.
 H. Iwaniec, On the order of vanishing of modular Lfunctions at the critical point, Seminaire de Theorie des Nombres, Bordeaux 2 365376 (1990). MR 92h:11040
 11.
 D. Lieman, Nonvanishing of Lseries associated to cubic twists of elliptic curves, Annals of Math. 140 81108 (1994). MR 95g:11044
 12.
 K. Murty and R. Murty, Mean values of derivatives of modular Lseries, Annals of Math. 133 447475 (1991).
 13.
 S.J. Patterson, A cubic analogue of the theta series, J. Reine Agnew Math. 296 125161 (1977). MR 58:27795b
 14.
 D. Rohrlich, Nonvanishing of Lfunctions for GL(2), Inventiones Math. 97 381403 (1989). MR 90g:11062
 15.
 G. Shimura, On the periods of modular forms, Math. Annalen 229 211221 (1977). MR 57:5911
 16.
 J. Waldspurger, Correspondences de Shimura et quaternions, Forum Math 3 219307 (1991). MR 92g:11054
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
11F66,
11F70,
11M41,
11N75
Retrieve articles in all journals
with MSC (1991):
11F66,
11F70,
11M41,
11N75
Additional Information
Xiaotie She
Affiliation:
Department of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16802
Address at time of publication:
Financial Data Planning Corp., 2140 S. Dixie Hwy., Miami, Florida 33133
Email:
xiaoties@fdpcorp.com
DOI:
http://dx.doi.org/10.1090/S0002994799020826
PII:
S 00029947(99)020826
Received by editor(s):
September 27, 1996
Received by editor(s) in revised form:
February 14, 1997
Article copyright:
© Copyright 1999
American Mathematical Society
