Symplectic group lattices

Authors:
Rudolf Scharlau and Pham Huu Tiep

Journal:
Trans. Amer. Math. Soc. **351** (1999), 2101-2139

MSC (1991):
Primary 20C10, 20C15, 20C20, 11E12, 11H31, 94B05

Published electronically:
January 26, 1999

MathSciNet review:
1653379

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an odd prime. It is known that the symplectic group has two (algebraically conjugate) irreducible representations of degree realized over , where . We study the integral lattices related to these representations for the case . (The case has been considered in a previous paper.) We show that the class of invariant lattices contains either unimodular or -modular lattices. These lattices are explicitly constructed and classified. Gram matrices of the lattices are given, using a discrete analogue of Maslov index.

**[BaV]**R. Bacher and B. Venkov,*Lattices and association schemes: a unimodular example without roots in dimension 28*, Ann. Inst. Fourier (Grenoble)**45**(1995), no. 5, 1163–1176 (English, with English and French summaries). MR**1370742****[BRW]**Beverley Bolt, T. G. Room, and G. E. Wall,*On the Clifford collineation, transform and similarity groups. I, II.*, J. Austral. Math. Soc.**2**(1961/1962), 60–79, 80–96. MR**0125874****[BuS]**P. Buser and P. Sarnak,*On the period matrix of a Riemann surface of large genus*, Invent. Math.**117**(1994), no. 1, 27–56. With an appendix by J. H. Conway and N. J. A. Sloane. MR**1269424**, 10.1007/BF01232233**[Coh]**Harvey Cohn,*A classical invitation to algebraic numbers and class fields*, Springer-Verlag, New York-Heidelberg, 1978. With two appendices by Olga Taussky: “Artin’s 1932 Göttingen lectures on class field theory” and “Connections between algebraic number theory and integral matrices”; Universitext. MR**506156****[Atlas]**J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,*Atlas of finite groups*, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR**827219****[CoS 1]**J. H. Conway and N. J. A. Sloane,*On lattices equivalent to their duals*, J. Number Theory**48**(1994), no. 3, 373–382. MR**1293868**, 10.1006/jnth.1994.1073**[CoS 2]**J. H. Conway and N. J. A. Sloane,*A new upper bound on the minimal distance of self-dual codes*, IEEE Trans. Inform. Theory**36**(1990), no. 6, 1319–1333. MR**1080819**, 10.1109/18.59931**[CoT]**Arjeh M. Cohen and Pham Huu Tiep,*Splitting fields for Jordan subgroups*, Finite reductive groups (Luminy, 1994) Progr. Math., vol. 141, Birkhäuser Boston, Boston, MA, 1997, pp. 165–183. MR**1429872**, 10.1007/s10107-012-0513-3**[DiM]**François Digne and Jean Michel,*Representations of finite groups of Lie type*, London Mathematical Society Student Texts, vol. 21, Cambridge University Press, Cambridge, 1991. MR**1118841****[Dum]**Neil Dummigan,*Symplectic group lattices as Mordell-Weil sublattices*, J. Number Theory**61**(1996), no. 2, 365–387. MR**1423059**, 10.1006/jnth.1996.0154**[Elk]**Noam D. Elkies,*A characterization of the 𝑍ⁿ lattice*, Math. Res. Lett.**2**(1995), no. 3, 321–326. MR**1338791**, 10.4310/MRL.1995.v2.n3.a9**[Gow]**R. Gow,*Even unimodular lattices associated with the Weil representation of the finite symplectic group*, J. Algebra**122**(1989), no. 2, 510–519. MR**999089**, 10.1016/0021-8693(89)90232-9**[GoW]**R. Gow and W. Willems, On the geometry of some simple modules in characteristic ,*J. Algebra***195**(1997), 634-649.**[Gro]**Benedict H. Gross,*Group representations and lattices*, J. Amer. Math. Soc.**3**(1990), no. 4, 929–960. MR**1071117**, 10.1090/S0894-0347-1990-1071117-8**[Isa]**I. M. Isaacs,*Characters of solvable and symplectic groups*, Amer. J. Math.**95**(1973), 594–635. MR**0332945****[KoT]**Alexei I. Kostrikin and Phạm Hũ’u Ti\cfudot{e}p,*Orthogonal decompositions and integral lattices*, de Gruyter Expositions in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1994. MR**1308713****[LiV]**Gérard Lion and Michèle Vergne,*The Weil representation, Maslov index and theta series*, Progress in Mathematics, vol. 6, Birkhäuser, Boston, Mass., 1980. MR**573448****[NPl]**G. Nebe and W. Plesken,*Finite rational matrix groups*, Mem. Amer. Math. Soc.**116**(1995), no. 556, viii+144. MR**1265024**, 10.1090/memo/0556**[Que]**H.-G. Quebbemann,*Modular lattices in Euclidean spaces*, J. Number Theory**54**(1995), no. 2, 190–202. MR**1354045**, 10.1006/jnth.1995.1111**[SchHem]**Rudolf Scharlau and Boris Hemkemeier,*Classification of integral lattices with large class number*, Math. Comp.**67**(1998), no. 222, 737–749. MR**1458224**, 10.1090/S0025-5718-98-00938-7**[SchT]**Rudolf Scharlau and Pham Huu Tiep,*Symplectic groups, symplectic spreads, codes, and unimodular lattices*, J. Algebra**194**(1997), no. 1, 113–156. MR**1461484**, 10.1006/jabr.1996.6902**[Sei]**Gary M. Seitz,*Some representations of classical groups*, J. London Math. Soc. (2)**10**(1975), 115–120. MR**0369556****[Tiep 1]**Pham Huu Tiep, Weil representations of finite symplectic groups, and Gow lattices,*Mat. Sb.***182**, no. , ; English transl. in*Math. USSR-Sb.***73**, no. , .**[Tiep 2]**Pham Huu Tiep,*Globally irreducible representations of finite groups and integral lattices*, Geom. Dedicata**64**(1997), no. 1, 85–123. MR**1432536**, 10.1023/A:1004917606870**[Tiep 3]**Pham Huu Tiep, Globally irreducible representations of the finite symplectic group ,*Commun. Algebra***22**, .**[Tiep 4]**Pham Huu Tiep,*Weil representations as globally irreducible representations*, Math. Nachr.**184**(1997), 313–327. MR**1439180**, 10.1002/mana.19971840114**[TZa 1]**Pham Huu Tiep and Alexander E. Zalesskii,*Minimal characters of the finite classical groups*, Comm. Algebra**24**(1996), no. 6, 2093–2167. MR**1386030**, 10.1080/00927879608825690**[TZa 2]**Pham Huu Tiep and A. E. Zalesskii, Some characterizations of the Weil representations of the symplectic and unitary groups,*J. Algebra***192**(1997), 130-165. CMP**97:13****[Ward 1]**Harold N. Ward,*Representations of symplectic groups*, J. Algebra**20**(1972), 182–195. MR**0286909****[Ward 2]**Harold N. Ward,*Quadratic residue codes in their prime*, J. Algebra**150**(1992), no. 1, 87–100. MR**1174890**, 10.1016/S0021-8693(05)80051-1**[Zal]**A. Zalesskiĭ,*Decomposition numbers modulo 𝑝 of certain representations of the groups 𝑆𝐿_{𝑛}(𝑝^{𝑘}), 𝑆𝑈_{𝑛}(𝑝^{𝑘}), 𝑆𝑝_{2𝑛}(𝑝^{𝑘})*, Topics in algebra, Part 2 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 491–500. MR**1171296**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
20C10,
20C15,
20C20,
11E12,
11H31,
94B05

Retrieve articles in all journals with MSC (1991): 20C10, 20C15, 20C20, 11E12, 11H31, 94B05

Additional Information

**Rudolf Scharlau**

Affiliation:
Department of Mathematics, University of Dortmund, 44221 Dortmund, Germany

Email:
rudolf.scharlau@mathematik.uni-dortmund.de

**Pham Huu Tiep**

Affiliation:
Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Address at time of publication:
Department of Mathematics, University of Florida, Gainseville, Florida 32611

Email:
tiep@math.ufl.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02469-1

Keywords:
Integral lattice,
unimodular lattice,
$p$-modular lattice,
finite symplectic group,
Weil representation,
Maslov index,
linear code,
self-dual code

Received by editor(s):
December 10, 1996

Published electronically:
January 26, 1999

Additional Notes:
Part of this work was done during the second author’s stay at the Department of Mathematics, Israel Institute of Technology. He is grateful to Professor D. Chillag and his colleagues at the Technion for stimulating conversations and their generous hospitality. His work was also supported in part by the DFG

Article copyright:
© Copyright 1999
American Mathematical Society