Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Partial subdifferentials, derivates and Rademacher's Theorem


Authors: D. N. Bessis and F. H. Clarke
Journal: Trans. Amer. Math. Soc. 351 (1999), 2899-2926
MSC (1991): Primary 26E99; Secondary 46G05, 49J50, 58B10.
DOI: https://doi.org/10.1090/S0002-9947-99-02203-5
Published electronically: March 10, 1999
MathSciNet review: 1475676
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we present new partial subdifferentiation formulas in nonsmooth analysis, based upon the study of two directional derivatives. Simple applications of these formulas include a new elementary proof of Rademacher's Theorem in ${\mathbb R}^n$, as well as some results on Gâteaux and Fréchet differentiability for locally Lipschitz functions in a separable Hilbert space.

RÉSUMÉ. Dans cet article, nous présentons de nouvelles formules de sousdifférentiation partielle en analyse nonlisse, basées sur l'étude de deux dérivées directionnelles. Une simple application de ces formules nous permet d'obtenir une nouvelle preuve élémentaire du théorème de Rademacher dans ${\mathbb R}^{n}$, ainsi que certains résultats sur la différentiabilité Gâteaux ou Fréchet des fonctions localement Lipschitz sur un espace de Hilbert séparable.


References [Enhancements On Off] (What's this?)

  • 1. Aronszajn N., Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. MR 54:13562
  • 2. Bessis D.N., Analyse contingentielle et sousdifférentielle, PhD thesis, Université de Montréal, 1997.
  • 3. Borwein J.M., Strójwas H.M., Proximal analysis and boundaries of closed sets in Banach space. II. Applications, Canad. J. Math. 39 (1987), no. 2, 428-472. MR 88f:46034
  • 4. Bruckner A., Differentiation of real functions, Second edition, CRM Monograph Series, 1994. MR 94m:26001
  • 5. Choquet G., Outils topologiques et métriques de l'analyse mathématique, Cours rédigé par C. Mayer, Centre de Documentation Universitaire, Paris, 1969. MR 41:7033
  • 6. Clarke F.H., Generalized gradients and applications, Trans. Amer. Math. Soc. 205 (1975), 247-262. MR 51:3373
  • 7. Clarke F.H., Optimization and nonsmooth analysis, Second edition, Classics in Applied Mathematics 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1990. MR 91e:49001
  • 8. Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth analysis and optimal control, to be published in Graduate Texts in Mathematics, Springer-Verlag. CMP 98:06
  • 9. Clarke F.H., Ledyaev Yu.S., Wolenski P.R., Proximal analysis and minimization principles, J. Math. Anal. Appl. 196 (1995), 722-735. MR 96i:49028
  • 10. Dol\v{z}enko E.P., Boundary properties of arbitrary functions (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 3-14. MR 36:388
  • 11. Fabián M., Preiss D., On intermediate differentiability of Lipschitz functions on certain Banach spaces, Proc. Amer. Math. Soc. 113 (1991), no. 3, 733-740. MR 92g:46048
  • 12. Halmos P.R., Measure Theory, D.Van Nostrand Company, Inc., New York, 1986. MR 11:504d
  • 13. Giles J.R., Sciffer S., Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces, Bull. Austral. Math. Soc. 47 (1993), 205-212. MR 94a:58022
  • 14. Kuratowski K., Topology, New edition, revised and augmented, Academic Press, New York-London, 1966. MR 36:840
  • 15. Luke\v{s} J., Malý J., Zajicek L., Fine topology methods in real analysis and potential theory, Lecture Notes in Mathematics, 1189, Springer-Verlag, Berlin-New York, 1986. MR 89b:31001
  • 16. Mignot F., Contrôle dans les inéquations variationnelles elliptiques, J. Funct. Anal. 22 (1976), 130-185. MR 54:11136
  • 17. de Mises M.R., La base géométrique du théorème de M. Mandelbrojt sur les points singuliers d'une fonction analytique, C.R. Acad. Sci. Paris Sér. I Math. 205 (1937), 1353-1355.
  • 18. Nekvinda A., Zajicek L., A simple proof of Rademacher Theorem, \v{C}asopis P\v{e}st. Mat. 113 (1988), no. 4, 337-341. MR 90c:26043
  • 19. Phelps R.R., Convex functions, monotone operators and differentiability, Second edition, Lecture Notes in Mathematics, 1364, Springer-Verlag, Berlin, 1993. MR 94f:46055
  • 20. Phelps R.R., Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacific J. Math. 77 (1978), no. 2, 523-531. MR 80m:46040
  • 21. Preiss D., Differentiability of Lipschitz functions on Banach spaces, J. Funct. Anal. 91 (1990), 312-345. MR 91g:46051
  • 22. Preiss D., Gâteaux differentiable Lipschitz functions need not be Fréchet differentiable on a residual subset, Rend. Circ. Mat. Palermo Suppl. 2 (1982), 217-222. MR 84h:46054
  • 23. Rademacher H., Über partielle und totale Differenzierbarkeit I., Math. Ann. 89 (1919), 340-359.
  • 24. Saint-Pierre J., Sur le théorème de Rademacher, Travaux Sém. Anal. Convexe 12 (1982), exp. no. 2, 2.1-2.10. MR 84f:26016
  • 25. Saks S., Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. MR 29:4850
  • 26. Shu Zhong S., Choquet theorem and nonsmooth analysis, J. Math. Pures Appl. 67 (1988), no. 4, 411-432. MR 90e:58008
  • 27. Shu Zhong S., Différentiabilité d'une fonction localement lipschitzienne dans un espace de Banach séparable, J. Systems Sci. Math. Sci. 3 (1983), no. 2, 112-119. MR 88i:58013
  • 28. Zajícek L., Differentiability of the distance function and points of multivaluedness of the metric projection in Banach space, Czechoslovak Math. J. 33(108) (1983), no. 2, 292-308. MR 85b:46025
  • 29. Zajícek L., Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$, Casopis Pest. Mat. 101 (1976), no. 4, 350-359. MR 56:15935

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 26E99, 46G05, 49J50, 58B10.

Retrieve articles in all journals with MSC (1991): 26E99, 46G05, 49J50, 58B10.


Additional Information

D. N. Bessis
Affiliation: Centre for Process Systems Engineering, Imperial College of Science, Technology and Medicine, Exhibition Road, London, United Kingdom, SW7 2AZ
Email: d.bessis@ic.ac.uk

F. H. Clarke
Affiliation: Mathématiques, Université de Lyon I, 69622 Villeurbanne, France, and Centre de Recherches Mathématiques, Université de Montréal, C. P. 6128, Succ. Centre-ville, Montréal, Québec, Canada, H3C 3J7
Email: clarke@crm.umontreal.ca

DOI: https://doi.org/10.1090/S0002-9947-99-02203-5
Keywords: Nonsmooth analysis, locally Lipschitz functions, directional derivates, partial subdifferentials, G\^{a}teaux and Fr\'{e}chet derivatives.
Received by editor(s): February 2, 1997
Published electronically: March 10, 1999
Additional Notes: We gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada, and of le Fonds FCAR du Québec
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society