Diffeomorphisms approximated by Anosov on the

2-torus and their SBR measures

Author:
Naoya Sumi

Journal:
Trans. Amer. Math. Soc. **351** (1999), 3373-3385

MSC (1991):
Primary 58F11, 58F12, 58F15

DOI:
https://doi.org/10.1090/S0002-9947-99-02426-5

Published electronically:
April 8, 1999

MathSciNet review:
1637098

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the set of diffeomorphisms of the 2-torus , provided the conditions that the tangent bundle splits into the directed sum of -invariant subbundles , and there is such that and . Then we prove that the set is the union of Anosov diffeomorphisms and diffeomorphisms approximated by Anosov, and moreover every diffeomorphism approximated by Anosov in the set has no SBR measures. This is related to a result of Hu-Young.

**[A]**D.V. Anosov,*Geodesic flows on closed Riemannian manifolds with negative curvature*, Proc. Steklov Inst. Math.**90**(1967), 1-235. MR**39:3527****[A-H]**N. Aoki and K. Hiraide,*Topological Theory of Dynamical Systems*, Mathematical Library, North-Holland, 1994. MR**95m:58095****[B]**R. Bowen,*Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms*, Lecture Notes in Math. 470, Springer-Verlag, 1975. MR**56:1364****[H]**K. Hiraide,*Expansive homeomorphisms of compact surfaces are pseudo-Anosov*, Osaka J. Math.**27**(1990), 117-162. MR**91b:58184****[H-Y]**H. Hu and L.S. Young,*Nonexistence of SBR measures for some diffeomorphisms that are `Almost Anosov'*, Ergod. Th. & Dynam. Sys.**15**(1995), 67-76. MR**95j:58096****[H-P]**M. Hirsch and C. Pugh,*Stable manifolds and hyperbolic sets*, Global Analysis, Proc. Sympos. Pure Math. 14, Amer. Math. Soc. (1970), 133-163. MR**42:6872****[L]**F. Ledrappier,*Propriétés ergodiques des measures de Sinai*, Publ. Math. I.H.E.S.**59**(1984), 163-188. MR**86f:58092****[L-Y]**R. Ledrappier and L.S. Young,*The metric entropy of diffeomorphisms I*, Ann. of Math.**122**(1985), 509-539. MR**87i:58101a****[M]**R. Mañé,*Contributions to the stability conjecture*, Topology**17**(1978), 383-396. MR**84b:58061****[P]**Y.B. Pesin,*Families of invariant manifolds corresponding to non-zero characteristic exponents*, Math. USSR Izvestija**10**(1978), 1261-1305. MR**56:16690****[R1]**J. Robbin,*A structural stability theorem*, Ann. of Math.**94**(1971), 447-493. MR**44:4783****[R2]**C. Robinson,*Stability theorems and hyperbolicity in dynamical systems*, Rocky Mountain J. Math.**7**(1977), 425-437. MR**58:13200****[R3]**V.A. Rohlin,*Lectures on the theory of entropy of translations with invariant measures*, Russian Math. Surveys**22:5**(1967), 1-54. MR**36:349****[S1]**Ya.G. Sinai,*Gibbs measures in ergodic theory*, Russ. Math. Surveys**166**(1972), 21-69. MR**53:3265****[S2]**S. Smale,*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747-817. MR**37:3598**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58F11,
58F12,
58F15

Retrieve articles in all journals with MSC (1991): 58F11, 58F12, 58F15

Additional Information

**Naoya Sumi**

Affiliation:
Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-03, Japan

Email:
sumi@math.metro-u.ac.jp

DOI:
https://doi.org/10.1090/S0002-9947-99-02426-5

Keywords:
Anosov diffeomorphism,
SBR measure

Received by editor(s):
February 10, 1997

Published electronically:
April 8, 1999

Article copyright:
© Copyright 1999
American Mathematical Society