Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The space of complete minimal surfaces
with finite total curvature
as lagrangian submanifold


Authors: Joaquín Pérez and Antonio Ros
Journal: Trans. Amer. Math. Soc. 351 (1999), 3935-3952
MSC (1991): Primary 53A10, 53C42
DOI: https://doi.org/10.1090/S0002-9947-99-02250-3
Published electronically: February 8, 1999
MathSciNet review: 1487630
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The space ${\cal M}$ of nondegenerate, properly embedded minimal surfaces in ${\mathbb R}^3$ with finite total curvature and fixed topology is an analytic lagrangian submanifold of ${\mathbb C}^n$, where $n$ is the number of ends of the surface. In this paper we give two expressions, one integral and the other pointwise, for the second fundamental form of this submanifold. We also consider the compact boundary case, and we show that the space of stable nonflat minimal annuli that bound a fixed convex curve in a horizontal plane, having a horizontal end of finite total curvature, is a locally convex curve in the plane ${\mathbb C}$.


References [Enhancements On Off] (What's this?)

  • 1. C. Costa, Example of a complete minimal immersion in ${\mathbb R} ^3$ of genus one and three embedded ends, Bull. Soc. Bras. Mat. 15 (1984) 47-54. MR 87c:53111
  • 2. C. Costa, Classification of complete minimal surfaces in ${\mathbb R} ^3$ with finite total curvature $12\pi $, Invent. Math. 105 (1991) 273-303. MR 92h:53010
  • 3. D. Fischer-Colbrie, On complete minimal surfaces with finite Morse index in three manifolds, Invent. Math. 82 (1985) 121-132. MR 87b:53090
  • 4. L. Hauswirth, On periodic minimal surfaces of type Scherk, preprint.
  • 5. D. Hoffman & H. Karcher, Complete embedded minimal surfaces of finite total curvature, Springer, Berlin, 1997. CMP 98:06.
  • 6. D. Hoffman & W. H. Meeks III, A complete minimal surface in ${\mathbb R} ^3$ with genus one and three ends, J. Differential Geometry 21 (1985) 109-127. MR 87d:53008
  • 7. D. Hoffman & W. H. Meeks III, Embedded minimal surfaces of finite topology, Ann. Math. 131 (1990) 1-34. MR 91i:53010
  • 8. N. Kapouleas, Complete constant mean curvature surfaces in euclidean three space, Ann. Math. 131 (1990) 239-330. MR 93a:53007a
  • 9. N. Kapouleas, Complete embedded minimal surfaces of finite total curvature, J. Differential Geom. 47 (1997), 95-169. CMP 98:07
  • 10. H. Karcher, Embedded minimal surfaces derived from Scherk's examples, Manuscripta Math. 62 (1988) 83-114. MR 89i:53009
  • 11. N. Korevaar, R. Kusner & B. Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Diff. Geom. 30 (1989) 465-503. MR 90g:53011
  • 12. R. Kusner, R. Mazzeo & D. Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. and Funct. Analysis 1 (1996) 120-137. MR 97b:58022
  • 13. R. Mazzeo & D. Pollack, Gluing and moduli for noncompact geometric problems, preprint.
  • 14. R. Mazzeo, D. Pollack & K. Uhlenbeck, Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 2(9) (1996) 303-344. MR 96f:53055
  • 15. W. H. Meeks III & B. White, Minimal surfaces bounded by convex curves in parallel planes, Comment. Math. Helv. 66(2) (1991) 263-278. MR 92e:53013
  • 16. J. Pérez, On singly-periodic minimal surfaces with planar ends, Trans. of the A.M.S. 349 (6) (1997) 2371-2389. MR 98b:53009
  • 17. J. Pérez & A. Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Univ. Math. J. 45 1 (1996), 177-204. MR 97k:58034
  • 18. J. Pérez & A. Ros, One-ended minimal annuli bounded by a convex curve, in preparation.
  • 19. D. Pollack, Geometric moduli spaces as Lagrangian submanifolds, in preparation.
  • 20. A. J. Tromba, Intrinsic third derivatives for Plateau's problem and the Morse inequalities for disc minimal surfaces in ${\mathbb R} ^3$, Calc. Var. 1 (1993) 335-353. MR 95a:58024
  • 21. M. Wohlgemuth, Higher genus minimal surfaces of finite total curvature, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53A10, 53C42

Retrieve articles in all journals with MSC (1991): 53A10, 53C42


Additional Information

Joaquín Pérez
Affiliation: Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, Fuentenueva, 18071, Granada, Spain
Email: jperez@goliat.ugr.es

Antonio Ros
Affiliation: Departamento de Geometria y Topologia, Facultad de Ciencias, Universidad de Granada, Fuentenueva, 18071, Granada, Spain
Email: aros@goliat.ugr.es

DOI: https://doi.org/10.1090/S0002-9947-99-02250-3
Received by editor(s): April 10, 1997
Published electronically: February 8, 1999
Additional Notes: Research partially supported by a DGYCYT Grant No. PB94-0796.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society