Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Arithmetically Buchsbaum divisors
on varieties of minimal degree


Author: Uwe Nagel
Journal: Trans. Amer. Math. Soc. 351 (1999), 4381-4409
MSC (1991): Primary 14M05; Secondary 13H10
DOI: https://doi.org/10.1090/S0002-9947-99-02357-0
Published electronically: April 20, 1999
MathSciNet review: 1615938
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider integral arithmetically Buchsbaum subschemes of projective space. First we show that arithmetical Buchsbaum varieties of sufficiently large degree have maximal Castelnuovo-Mumford regularity if and only if they are divisors on a variety of minimal degree. Second we determine all varieties of minimal degree and their divisor classes which contain an integral arithmetically Buchsbaum subscheme. Third we investigate these varieties. In particular, we compute their Hilbert function, cohomology modules and (often) their graded Betti numbers and obtain an existence result for smooth arithmetically Buchsbaum varieties.


References [Enhancements On Off] (What's this?)

  • 1. E. Ballico, On singular curves in positive characteristic, Math. Nachr. 141 (1989), 267-273. MR 90h:14042
  • 2. M. Brodmann, U. Nagel, Bounding cohomological Hilbert functions by hyperplane sections, J. Algebra 174 (1995), 323-348. MR 96d:14017
  • 3. D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Math. 150, Springer-Verlag, 1995. MR 97a:13001
  • 4. D. Eisenbud, S. Gôto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), 89-133. MR 85f:13023
  • 5. D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom. 1 (1992), 15-30. MR 92i:14035
  • 6. D. Eisenbud, J. Harris, On varieties of minimal degree (A centennial account), Proceedings of Symposia in Pure Mathematics, Vol. 46 (1987), 3-13. MR 89f:14042
  • 7. D. Eisenbud, J. Koh, Some linear syzygy conjectures, Adv. Math. 90 (1991), 47-76. MR 93e:13019
  • 8. E. G. Evans, P. Griffith, The syzygy problem, Ann. Math. 114 (1981), 323-333. MR 83i:13006
  • 9. L. Gruson, R. Lazarsfeld, C. Peskine, On a theorem of Castelnuovo, and the equations defining space curves, Invent. Math. 72 (1983), 491-506. MR 85g:14033
  • 10. J. Harris, The genus of space curves, Math. Ann 249 (1980), 191-204. MR 81i:14022
  • 11. J. Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 36-68. MR 82h:14010
  • 12. J. Harris, D. Eisenbud, Curves in projective space, Chapter 3, Les Presses de l'Universite, Montreal, 1982. MR 84g:14024
  • 13. R. Hartshorne, Algebraic geometry, Graduate Texts in Math. 52, Springer-Verlag, 1977. MR 57:3116
  • 14. C. Huneke, B. Ulrich, General hyperplane sections of algebraic varieties, J. Algebraic Geom. 2 (1993), 487-505. MR 94b:14046
  • 15. S. Lvovski, On graded Betti numbers for finite subsets of curves, Preprint, Bonn 1997.
  • 16. D. Mumford, Lectures on curves on an algebraic surface, Ann. of Math. Studies 59, Princeton Univ.Press, 1966. MR 35:187
  • 17. U. Nagel, On the defining equations and syzygies of arithmetically Cohen-Macaulay varieties in arbitrary characteristic, J. Algebra 175 (1995), 359-372. MR 96f:13023
  • 18. U. Nagel, On arithmetically Buchsbaum subschemes and liaison, Habilitationsschrift, Paderborn 1996.
  • 19. U. Nagel, Y. Pitteloud, On graded Betti numbers and geometrical properties of projective varieties, Manuscripta Math. 84 (1994), 291-314. MR 96d:13018
  • 20. U. Nagel, P. Schenzel, Degree bounds for generators of cohomology modules and Castelnuovo-Mumford regularity, Nagoya Math. J. (to appear).
  • 21. U. Nagel, W. Vogel, Bounds for Castelnuovo's regularity and the genus of projective varieties, In: Topics in Algebra. Banach Center Publications, Vol. 26, Part 2, 163-183, PWN-Polish Scientific Publishers, Warsaw 1990. MR 93k:13024
  • 22. J.-P. Serre, Faiscaux algébriques cohérents, Ann. Math. 61 (1955), 197-278. MR 16:953c
  • 23. J. Stückrad, W. Vogel, Castelnuovo bounds for certain subvarieties in $\mathbb{ P}^n$, Math. Ann. 276 (1987), 341-352. MR 88e:13013
  • 24. J. Stückrad, W. Vogel, Buchsbaum rings and applications, Springer-Verlag, 1986. MR 88h:13011a
  • 25. R. Treger, On equations defining arithmetically Cohen-Macaulay schemes, II, Duke Math. J. 48 (1981), 35-47. MR 84j:14050b
  • 26. N. V. Trung, G. Valla, Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties, Math. Ann. 281 (1988), 209-218. MR 89k:14083

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14M05, 13H10

Retrieve articles in all journals with MSC (1991): 14M05, 13H10


Additional Information

Uwe Nagel
Affiliation: Fachbereich Mathematik und Informatik, Universität-Gesamthochschule Paderborn, D–33095 Paderborn, Germany
Email: uwen@uni-paderborn.de

DOI: https://doi.org/10.1090/S0002-9947-99-02357-0
Keywords: Minimal generator, local cohomology, Castelnuovo-Mumford regularity, arithmetically Buchsbaum scheme, rational normal scroll
Received by editor(s): August 27, 1997
Published electronically: April 20, 1999
Additional Notes: The material of this paper is part of the author’s Habilitationsschrift \cite{hab}.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society