When almost multiplicative morphisms

are close to homomorphisms

Author:
Huaxin Lin

Journal:
Trans. Amer. Math. Soc. **351** (1999), 5027-5049

MSC (1991):
Primary 46L05; Secondary 46L80

DOI:
https://doi.org/10.1090/S0002-9947-99-02310-7

Published electronically:
August 10, 1999

MathSciNet review:
1603918

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that approximately multiplicative contractive positive morphisms from (with dim ) into a simple -algebra of real rank zero and of stable rank one are close to homomorphisms, provided that certain -theoretical obstacles vanish. As a corollary we show that a homomorphism is approximated by homomorphisms with finite dimensional range, if gives no -theoretical obstacle.

**[BkD]**I. D. Berg and K. Davidson,*Almost commuting matrices and a quantitative version of Brown -Douglas-Fillmore theorem*, Acta Math.,**166**(1991), 121-161. MR**92f:47015****[Bl1]**B. Blackadar,*K-Theory for Operator Algebras*, Springer-Verlag, New York, Berlin, 1986. MR**88g:46082****[Bn1]**L. G. Brown,*Stable isomorphism of hereditary subalgebras of -algebras*, Pacific J. Math.,**71**(1977), 335-348. MR**56:12894****[Bn2]**L. G. Brown,*Interpolation by projections in -algebras of real rank zero*, J. Operator Theory,**71**(1977), 335-348.**[BDF1]**L. G. Brown, R. Douglas, and P. Fillmore,*Unitary equivalence modulo the compact operators and extensions of -algebras*, Proc. Conf. on Operator Theory, Springer Lecture Notes in Math.**345**(1973), 56-128. MR**52:1378****[BDF2]**L. G. Brown, R. Douglas, and P. Fillmore,*Extensions of -algebras and -homology*, Ann. of Math.**105**(1977), 265-324. MR**56:16399****[BP1]**L. G. Brown and G. K. Pedersen,*-algebras of real rank zero*, J. Funct. Anal.**99**(1991), 131-149. MR**92m:46086****[BP2]**L. G. Brown and G. K. Pedersen,*On the geometry of the unit ball of a -algebra, part II*, preprint of Mathematics Institute of Copenhagen University (1993).**[BP3]**L. G. Brown and G. K. Pedersen,*On the geometry of the unit ball of a -algebra*, J. Reine Angew. Math.**469**(1995), 113-147. MR**96m:46101****[Ch]**M. D. Choi,*Almost commuting matrices need not be nearly commuting*, Proc. Amer. Math. Soc.**102**(1988), 529-609. MR**89b:47021****[CE]**M-D. Choi and E. Effros,*The completely positive lifting problem for -algebras*, Ann. of Math.**104**(1976), 585-609. MR**54:5843****[Cu]**J. Cuntz,*-theory for certain -algebras*, Ann. of Math.**113**(1981), 181-197. MR**84c:46058****[D1]**M. Dadarlat,*Reduction to dimension three of local spectra of real rank zero -algebras*, J. Reine Angew. Math.,**460**(1995), 189-212. MR**95m:46116****[D2]**M. Dadarlat,*Approximately unitarily equivalent morphisms and inductive limit -algebras*, K-Theory,**9**(1995), 117-137. MR**96h:46088****[DL1]**M. Dadarlat and T. Loring,*The K-theory of abelian subalgebras of AF-algebras*, J. Reine Angew. Math.**432**(1992), 39-55. MR**94b:46099****[DL2]**M. Dadarlat and T. Loring,*-homology, asymptotic representations, and unsuspended -theory*J. Funct. Anal.**129**(1994), 367-384. MR**96d:46092****[DL3]**M. Dadarlat and T. Loring,*A universal multi-coefficient theorem for the Kasparov groups*, Duke Math. J.,**84**(1996), 355-377. MR**97f:46109****[D]**K. Davidson,*Almost commuting hermitian matrices*, Math. Scand.**56**(1985), 222-240. MR**87e:47012****[DN]**M. Dadarlat and A. Nemethi,*Shape theory and connected -theory*, J. Operator Theory**23**(1990), 207-291. MR**91j:46092****[Eff]**E. Effros,*Dimensions and -algebras*, CBMS Regional Conf. Ser. in Math., no. 46, Amer. Math. Soc., Providence, RI, 1981. MR**84k:46042****[Ell1]**G. A. Elliott,*On the classification of -algebras of real rank zero*, J. Reine Angew. Math.**443**(1993), 179-219. MR**94i:46074****[Ell2]**G. A. Elliott,*A classification of certain simple -algebras*, pp 373-385 in:*Quantum and Non-Commutative Analysis*(edited by H. Araki et al.), Kluwer, Dordrecht, 1993. MR**95h:46089****[Ell3]**G. A. Elliott,*Are amenable -algebras classifiable?*, Representation Theory of Groups and Algebras, Contemporary Math. vol 145, Amer. Math. Soc., Providence, RI, 1993. CMP**93:11****[Ell4]**G. A. Elliott, The classification problem for amenable -algebras, Proc. ICM Vol. 1, 2 (Zurich, 1994), Birkhauser, Basel, 1995, 922-932. MR**97g:46072****[EG]**G. A. Elliott and G. Gong,*On the classification of -algebras of real rank zero, II*, Ann. Math.,**144**(1996), 497-610. CMP**97:06****[EGLP]**G. A. Elliott, G. Gong, H. Lin and C. Pasnicu,*Abelian -subalgebras of -algebras of real rank zero and inductive limit -algebras*, Duke Math. J.,**85**, (1996) 511-554. MR**98a:46076****[EgL]**G. A. Elliott and T. Loring,*AF-embeddings of with prescribed -theory*, J. Funct. Anal.**103**(1992), 1-25. MR**93b:46134****[ER]**G. A. Elliott and M. Rørdam,*Classification of certain infinite simple -algebras, II*, Comment. Math. Helv.,**70**(1995), 615-638. MR**96e:46080b****[Ex]**R. Exel,*A Fredholm operator approach to Morita equivalence*, K-Theory,**7**(1993), 285-308. MR**94h:46107****[EL1]**R. Exel and T. A. Loring,*Almost commuting unitary matrices*, Proc. Amer. Math. Soc.,**106**(1989), 913-915. MR**89m:15003****[EL2]**R. Exel and T. A. Loring,*Invariants of almost commuting unitaries*, J. Funct. Anal.**95**(1991), 364-376. MR**92a:46083****[FR]**P. Friis and M. Rørdam,*Almost commutative self-adjoint matrices-a short proof of Huaxin Lin's theorem*, J. Reine Angew. Math.,**479**(1996), 121-131. MR**97i:46097****[G1]**G. Gong,*Classification of -algebras of real rank zero and unsuspended -equivalent types*, J. Funct. Anal.,**152**(1998), 281-329. CMP**98:09****[G2]**G. Gong,*On inductive limits of matrix algebras over higher dimensional spaces, part I, II*, Math. Scand.,**80**(1997), 41-55, 56-100. CMP**97:17****[G4]**G. Gong,*Approximation by dimension drop algebras and classification*, C. R. Math. Rep. Acad. Sci. Canada,**16**(1994), no.1, 40-44. MR**95c:46119****[GL1]**G. Gong and H. Lin,*Classification of homomorphisms from into a simple -algebra of real rank zero*, preprint.**[GL2]**G. Gong and H. Lin,*Almost multiplicative morphisms and almost commutative matrices*, preprint.**[Gd]**K. R. Goodearl,*Notes on a class of simple -algebras with real rank zero*, Publ. Math.,**36**(1992), 637-654. MR**94f:46092****[K]**E. Kirchberg, in preparation.**[Li]**L. Li,*-algebra homomorphisms and -theory*, preprint.**[Ln1]**H. Lin,*Skeleton -subalgebras*, Canad. J. Math.,**44**(1992), 324-341. MR**93h:46080****[Ln2]**H. Lin,*-algebra Extensions of*, Memoirs Amer. Math. Soc.,**115**(1995), no. 550. MR**96b:46098****[Ln3]**H. Lin,*Approximation by normal elements with finite spectra in -algebras of real rank zero*, Pacific. J. Math.,**173**(1996), 443-489. CMP**96:14****[Ln4]**H. Lin,*Almost commuting unitaries and classification of purely infinite simple -algebras*, J. Funct. Anal., to appear.**[Ln5]**H. Lin,*Almost commuting unitaries in purely infinite simple -algebras*, Math. Ann.,**303**(1995), 599-616. MR**96k:46101****[Ln6]**H. Lin,*Almost normal elements*, Inter. J. Math.,**5**(1994), 765-778. MR**95f:46096****[Ln7]**H. Lin,*Almost commuting selfadjoint matrices and applications*, The Fields Institute Communication,**13**(1997), 193-234. MR**98c:46121****[Ln8]**H. Lin,*Extensions by -algebras with real rank zero*, Inter. J. Math.,**4**(1993) 231-252. MR**94h:46095****[Ln9]**H. Lin,*Extensions by -algebras with real rank zero II*, Proc. London Math. Soc.,**71**(1995), 641-674. MR**96j:46072****[Ln10]**H. Lin,*Homomorphisms from into -algebras*, Canad. J. Math.,**49**(1997), 963-1009. CMP**98:08****[Ln11]**H. Lin,*Almost multiplicative morphisms and some applications*, J. Operator Theory,**37**(1997), 121-154. MR**98b:46091****[Ln12]**H. Lin,*-algebras with weak (FN)*, J. Funct. Anal.,**150**(1997), 65-74. CMP**98:02****[Ln13]**H. Lin,*Extensions of by simple -algebras of real rank zero*, Amer. J. Math.,**119**(1997), 1263-1289. CMP**98:04****[LP1]**H. Lin and N. C. Phillips,*Almost multiplicative morphisms and Cuntz-algebra*, J. International Math.,**6**(1995) 625-643. MR**97h:46097****[LP2]**H. Lin and N. C. Phillips,*Approximate unitary equivalence of homomorphisms from*, J. Reine Angew. Math.**464**(1995), 173-186. MR**98c:46120****[Lr1]**T. A. Loring,*-algebras generated by stable relations*, J. Funct. Anal.**112**(1993), 159-203. MR**94k:46115****[Lr2]**T. A. Loring,*K-theory and asymptotically commuting matrices*, Canad. J. Math.**40**(1988), 197-216. MR**89b:47022****[Lr3]**T. A. Loring,*Normal elements of -algebras of real rank zero without finite-spectrum approximants*, Proc. London Math. Soc.**51**(1995), 353-364. MR**96b:46099****[Lr4]**T. A. Loring,*Stable relations II: corona semiprojectivity and dimension-drop -algebras*, Pacific J. Math.,**172**(1996), 461-475. MR**97c:46070****[Lr5]**T. A. Loring,*When matrices commute*, preprint.**[M]**S. Mardesic,*On covering dimension and inverse limits of compact spaces*, Illinois J. Math**4**(1960), 278-291. MR**22:7101****[Pd]**G. K. Pedersen,*-algebras and corona -algebras, contribution to non-commutative topology*, J. Operator Theory**15**(1986), 15-32. MR**87a:46095****[Ph1]**N. C. Phillips,*Approximate unitary equivalence of homomorphisms from odd Cuntz algebras*, Fields Inst. Commun, 13, Amer. Math. Soc., Providence, RI, 1997. MR**97k:46068****[Ph2]**N. C. Phillips,*A Classification theorem for nuclear purely infinite simple -algebras*, preprint 1995.**[Rf]**M. Rieffel,*Dimension and stable rank in the -theory of -algebras*, Proc. London Math. Soc.**46**(1983), 301-333. MR**84g:46085****[Rr1]**M. Rørdam,*Classification of certain infinite simple -algebras*, J. Funct. Anal.**131**(1995), 415-458. MR**96e:46080a****[Rr2]**M. Rørdam,*Classification of certain infinite simple -algebras, III*, Fields Inst. Commun., 13, Amer. Math. Soc., Providence, RI, 1997. CMP**97:05****[RS]**J. Rosenberg and C. Schochet,*The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor*, Duke Math. J.**55**(1987), 431-474. MR**88i:46091****[Sch]**C. Schochet,*Topological methods for -algebras IV: mod p homology*, Pacific J. Math.,**114**(1984), 447-468. MR**86g:46103****[V]**D. Voiculescu,*A non-commutative Weyl-von Neumann Theorem*, Rev. Roum. Math. Pures et Appl.**21**(1976), 97-113. MR**54:3427****[Zh1]**S. Zhang,*-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part I*, Pacific J. Math.,**155**(1992), 169-197. MR**94i:46093****[Zh2]**S. Zhang,*-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part III*, Canad. J. Math.**42**(1990), 159-190. MR**94i:46095****[Zh3]**S. Zhang,*-groups, quasidiagonality, and interpolation by multiplier projections*, Trans. Amer. Math. Soc.**325**(1991), 793-818. MR**91j:46069****[Zh4]**S. Zhang,*Certain -algebras with real rank zero and their corona and multiplier algebras, II*, K-Theory,**6**(1992), 1-27. MR**94i:46094**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
46L05,
46L80

Retrieve articles in all journals with MSC (1991): 46L05, 46L80

Additional Information

**Huaxin Lin**

Affiliation:
Department of Mathematics, East China Normal University, Shanghai 200062, China

Address at time of publication:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

Email:
hlin@darkwing.uoregon.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02310-7

Received by editor(s):
April 10, 1997

Published electronically:
August 10, 1999

Additional Notes:
Research partially supported by NSF grant DMS 9531776

Article copyright:
© Copyright 1999
American Mathematical Society