Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Symmetry of properly embedded
special Weingarten surfaces in $\mathbf{H}^{3}$

Authors: Ricardo Sa Earp and Eric Toubiana
Journal: Trans. Amer. Math. Soc. 351 (1999), 4693-4711
MSC (1991): Primary 53A05, 53C42
Published electronically: August 25, 1999
MathSciNet review: 1675186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove some existence and uniqueness results about special Weingarten surfaces in hyperbolic space.

References [Enhancements On Off] (What's this?)

  • 1. J. L. Barbosa, R. Sa Earp. New results on prescribed mean curvature hypersurfaces in space forms. An Acad. Bras. Ci., 67, 1,1-5, (1995).
  • 2. J. L. Barbosa, R. Sa Earp. Prescribed mean curvature hypersurfaces in $H^{n+1} (-1)$ with convex planar boundary I. Geom. Dedicata, 71, 61-74, (1998).MR 99d:53064
  • 3. F.G. Braga Brito, R. Sa Earp. On the structure of certain Weingarten surfaces with boundary a circle. An. Fac. Sci. Toulouse, VI, No 2, 243-255, (1997). MR 99a:53005
  • 4. R. Bryant. Complex analysis and a class of Weingarten surfaces. Preprint.
  • 5. S.S. Chern. On special $W$-surface. Proc. Amer. Math. Soc., 6, 783-786, (1955). MR 17:657h
  • 6. M.P. Do Carmo, H.B. Lawson Jr. On Alexandrov-Bernstein theorems in hyperbolic space. Duke Math. J., 50, 995-1003, (1983). MR 85f:53009
  • 7. M.P. Do Carmo, J.M. Gomes, G. Thorbergsson. The influence of the boundary behaviour on hypersurfaces with constant mean curvature in $H^{n+1}$. Comm. Math. Helvitici, 61, 429-491, (1986). MR 87j:53087
  • 8. J.M. Gomes. Sobre hirpersuperfícies com curvatura média constante no espaço hiperbólico. Tese de doutorado. IMPA, (1985).
  • 9. P. Hartman, W. Wintner. Umbilical points and $W$-surfaces. Amer. J. Math., 76, 502-508, (1954). MR 16:68a
  • 10. H. Hopf. Differential geometry in the large. Lecture Notes in Math., Springer-Verlag 1000, (1983). MR 85b:53001
  • 11. W.Y. Hsiang. On generalization of theorems of A. D. Alexandrov and C. Delaunay on hypersurfaces of constant mean curvature. Duke Math. J., 49, 485-496, (1982). MR 84k:53007
  • 12. N.J. Korevaar, R. Kusner, W.H. Meeks III, B. Solomon. Constant mean curvature surfaces in hyperbolic space. Amer. J. Math., 114, 1-43, (1992). MR 92k:53116
  • 13. G. Levitt, H. Rosenberg. Symmetry of constant mean curvature hypersurfaces in hyperbolic space. Duke Math. J., 52, 53-59, (1985). MR 86h:53063
  • 14. B. Nelli, H. Rosenberg. Some remarks on embedded hypersurfaces in Hyperbolic Space of constant mean curvature and spherical boundary. Ann. Global Anal. Geom., 13, 23-30, (1995). MR 96c:53097
  • 15. H. Rosenberg, R. Sa Earp. The geometry of properly embedded special surfaces in ${\mathbf{R}^{3}}, e.g.$, surfaces satisfying $a H+b K=1$, where $a$ and $b$ are positive. Duke Math. J., 73, 291-306, (1994). MR 95b:53010
  • 16. R. Sa Earp et E. Toubiana. A note on special surfaces in ${\mathbf{R}^{3}}$. Mat. Contemp., 4, 108-118, (1993). MR 95j:53008
  • 17. R. Sa Earp et E. Toubiana. Sur les surfaces de Weingarten spéciales de type minimal. Bol. Soc. Bras. Mat., 26, No. 2, 129-148, (1995). MR 96j:53006
  • 18. R. Sa Earp et E. Toubiana. Classification des surfaces de type Delaunay et applications. Amer. J. Math. 221, 671-700, (1999).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53A05, 53C42

Retrieve articles in all journals with MSC (1991): 53A05, 53C42

Additional Information

Ricardo Sa Earp
Affiliation: Departamento de Matemática, Pontifícia Universidade Católica, Rua Marquês de São Vicente, 225, 22453-900 Gávea, Rio de Janeiro, Brasil

Eric Toubiana
Affiliation: Département de Mathématiques, Université Paris VII, 2, Place Jussieu, 75251 Paris Cedex 05, France

Received by editor(s): March 18, 1996
Published electronically: August 25, 1999
Additional Notes: Both authors were partially supported by CNPq and FAPERJ, Brazil
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society