Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Homogeneous spaces with
invariant projectively flat affine connections


Author: Hirohiko Shima
Journal: Trans. Amer. Math. Soc. 351 (1999), 4713-4726
MSC (1991): Primary 53C05, 53C30, 53C35, 53A15; Secondary 17C20
DOI: https://doi.org/10.1090/S0002-9947-99-02523-4
Published electronically: August 25, 1999
MathSciNet review: 1675234
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We characterize invariant projectively flat affine connections in terms of affine representations of Lie algebras, and show that a homogeneous space admits an invariant projectively flat affine connection if and only if it has an equivariant centro-affine immersion. We give a correspondence between semi-simple symmetric spaces with invariant projectively flat affine connections and central-simple Jordan algebras.


References [Enhancements On Off] (What's this?)

  • [A] Y. Agaoka, Invariant flat projective structures on homogeneous spaces, Hokkaido Math. J. 11 (1982), 125-172. MR 85g:53038
  • [BK] H. Braun und M. Koecher, Jordan-Algebren, Grundlehren der Math. Wissenschaften, 128, Springer, Berlin, Heidelberg, New York, 1966. MR 34:4310
  • [Ka] S. Kaneyuki, The Sylvester's Law of Inertia in Simple Graded Lie Algebras, J. Math. Soc. Japan, 50(1998), 593-614. MR 99f:17035
  • [KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, vol.I, John Wiley & Sons, New York, 1963. MR 97c:53001b
  • [K] M. Koecher, Jordan algebras and their applications, Lecture notes, Univ. of Minnesota, Minneapolis, 1962.
  • [Ks] J.L. Koszul, Domaines bornés homogenes et orbites de groupes de transformations affines, Bull. Soc. Math. France, 89 (1961), 515-533. MR 26:3090
  • [NP] K. Nomizu and U. Pinkall, On a certain class of homogeneous projectively flat manifolds, Tohoku Math. J. 39 (1987), 407-427. MR 88j:53050
  • [NS] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, 1994. MR 96e:53014
  • [Sa] T. Sasaki, Hyperbolic affine hyperspheres, Nagoya Math. J. 77 (1980), 107-123. MR 81e:53037
  • [Sh1] H. Shima, On locally symmetric homogeneous domains of completely reducible linear Lie groups, Math. Ann., 217 (1975), 93-95. MR 52:818
  • [Sh2] H. Shima, Symmetric spaces with invariant locally Hessian structures, J. Math. Soc. Japan, 29 (1977), 581-589. MR 56:9462
  • [Sh3] H. Shima, Homogeneous Hessian manifolds, Ann. Inst. Fourier, Grenoble, 30 (1980), 91-128. MR 82a:53054
  • [V1] E.B. Vinberg, Homogeneous cones, Dokl. Akad. Nauk SSSR, 133 (1960), 9-12; English transl., Soviet Math. Dokl., 1 (1960), 787-790. MR 25:5077
  • [V2] E.B. Vinberg, The theory of convex homogeneous cones, Trans. Moscow Math. Soc. 12 (1963), 340-403. MR 28:1637

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C05, 53C30, 53C35, 53A15, 17C20

Retrieve articles in all journals with MSC (1991): 53C05, 53C30, 53C35, 53A15, 17C20


Additional Information

Hirohiko Shima
Affiliation: Department of Mathematics, Yamaguchi University, Yamaguchi 753-8512, Japan
Email: shima@po.cc.yamaguchi-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-99-02523-4
Keywords: Invariant projectively flat affine connections, centro-affine immersions, homogeneous spaces, symmetric spaces, Jordan algebras
Received by editor(s): March 15, 1996
Published electronically: August 25, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society