Two special cases of Ganea's conjecture

Author:
Jeffrey A. Strom

Journal:
Trans. Amer. Math. Soc. **352** (2000), 679-688

MSC (1991):
Primary 55M30, 55P50; Secondary 55P42

Published electronically:
September 17, 1999

MathSciNet review:
1443893

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Ganea conjectured that for any finite CW complex and any , . In this paper we prove two special cases of this conjecture. The main result is the following. Let be a -connected -dimensional CW complex (not necessarily finite). We show that if and (which implies ), then . This is proved by showing that in a much larger range, and then showing that under the conditions imposed, . The second special case is an extension of Singhof's earlier result for manifolds.

**1.**A. L. Blakers and W. S. Massey,*The homotopy groups of a triad. II*, Ann. of Math. (2)**55**(1952), 192–201. MR**0044836****2.**Tudor Ganea,*Some problems on numerical homotopy invariants*, Symposium on Algebraic Topology (Battelle Seattle Res. Center, Seattle Wash., 1971) Springer, Berlin, 1971, pp. 23–30. Lecture Notes in Math., Vol. 249. MR**0339147****3.**W. J. Gilbert,*Some examples for weak category and conilpotency*, Illinois J. Math.**12**(1968), 421–432. MR**0231375****4.**Kathryn P. Hess,*A proof of Ganea’s conjecture for rational spaces*, Topology**30**(1991), no. 2, 205–214. MR**1098914**, 10.1016/0040-9383(91)90006-P**5.**N. Iwase: Ganea's conjecture on Lusternik-Schnirelmann category.*Bull. London Math. Society***30**(1998), 623-634. CMP**98:17****6.**I. M. James,*On category, in the sense of Lusternik-Schnirelmann*, Topology**17**(1978), no. 4, 331–348. MR**516214**, 10.1016/0040-9383(78)90002-2**7.**Luis Montejano,*A quick proof of Singhof’s 𝑐𝑎𝑡(𝑀×𝑆¹)=𝑐𝑎𝑡(𝑀)+1 theorem*, Manuscripta Math.**42**(1983), no. 1, 49–52. MR**693418**, 10.1007/BF01171745**8.**Yuli B. Rudyak,*On category weight and its applications*, Topology**38**(1999), no. 1, 37–55. MR**1644063**, 10.1016/S0040-9383(97)00101-8**9.**Wilhelm Singhof,*Minimal coverings of manifolds with balls*, Manuscripta Math.**29**(1979), no. 2-4, 385–415. MR**545050**, 10.1007/BF01303636**10.**Paul A. Schweitzer,*Secondary cohomology operations induced by the diagonal mapping*, Topology**3**(1965), 337–355. MR**0182969****11.**J. Strom, Category weight and essential category weight, Ph.D thesis, University of Wisconsin (1997).**12.**Robert M. Switzer,*Algebraic topology—homotopy and homology*, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der mathematischen Wissenschaften, Band 212. MR**0385836****13.**George W. Whitehead,*Elements of homotopy theory*, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR**516508**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
55M30,
55P50,
55P42

Retrieve articles in all journals with MSC (1991): 55M30, 55P50, 55P42

Additional Information

**Jeffrey A. Strom**

Affiliation:
Department of Mathematics, University of Wisconsin-Madison, Madison, Wisconsin 53706

Address at time of publication:
Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755

Email:
jeffrey.strom@dartmouth.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02046-2

Received by editor(s):
January 23, 1997

Published electronically:
September 17, 1999

Article copyright:
© Copyright 1999
American Mathematical Society