The set of idempotents

in the weakly almost periodic compactification

of the integers is not closed

Authors:
B. Bordbar and J. Pym

Journal:
Trans. Amer. Math. Soc. **352** (2000), 823-842

MSC (1991):
Primary 43A60, 22A15; Secondary 22D05

DOI:
https://doi.org/10.1090/S0002-9947-99-02273-4

Published electronically:
July 20, 1999

MathSciNet review:
1491855

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper answers negatively the question of whether the sets of idempotents in the weakly almost periodic compactifications of and are closed.

**1.**J F Berglund,*Problems about semitopological semigroups*, Semigroup Forum**16**(1980), 373-383. MR**81f:20098****2.**B Bordbar,*Weakly almost periodic functions on with a negative base*, J London Math Soc (to appear).**3.**B Bordbar and J Pym,*The weakly almost periodic compactification of a direct sum of finite groups*, Math Proc Cambridge Phil Soc**124**(1998), 421-449. CMP**98:16****4.**G Brown and W Moran,*The idempotent semigroups of compact monothetic semigroups*, Proc. Roy. Irish Acad., Sect. A ,**72**(1972), 17-33. MR**46:3682****5.**T Budak, N I\c{s}ik and J Pym,*Subsemigroups of Stone-\v{C}ech compactifications*, Math. Proc. Camb. Phil. Soc.**99**(1994), 116-137. MR**94c:54067****6.**K de Leeuw and I Glicksberg,*Applications of almost periodic compactifications*, Acta Math**105**(1961), 63-97. MR**24:A1632****7.**G A Edgar,*Measure, Topology and Fractal Geometry*, Springer, Berlin, 1990. MR**92a:54001****8.**N Hindman,*The ideal structure of the space of -uniform ultrafilters on a discrete semigroup*, Rocky Mountain Math J**16**(1986), 685-701.MR**88d:54031****9.**N Hindman and D Strauss,*Algebra in the Stone-\v{C}ech Compactification*, de Gruyter, Berlin, 1998.**10.**T Papazyan,*Oids, finite sums and the structure of the Stone-\v{C}ech compactification of a discrete semigroup*, Semigroup Forum**42**(1991), 265-277. MR**92b:54051****11.**J S Pym,*Semigroup structure in Stone-\v{C}ech compactifications*, J. London Math. Soc.**36**(1987), 421-428. MR**89b:54043****12.**W A F Ruppert,*Compact Semitopological Semigroups: An Intrinsic Theory*, Lecture Notes in Mathematics 1079, Springer, Berlin, 1984. MR**86e:22001****13.**W A F Ruppert,*Compact semitopological semigroups*, The Analytical and Topological Theory of Semigroups (K H Hofmann, J D Lawson and J S Pym, eds.), de Gruyter, Berlin, 1990, pp. 133-170. MR**91i:22006****14.**W A F Ruppert,*On signed -adic expansions and weakly almost periodic functions*, Proc. London Math. Soc.**63**(1991), 620-656. MR**93c:43007****15.**T T West,*Weakly compact monothetic semigroups of operators in Banach spaces*, Proc Roy Irish Acad A**67**(1968), 27-37. MR**39:824**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
43A60,
22A15,
22D05

Retrieve articles in all journals with MSC (1991): 43A60, 22A15, 22D05

Additional Information

**B. Bordbar**

Affiliation:
Department of Pure Mathematics, University of Sheffield, Sheffield S3 7RH, England

Email:
j.pym@sheffield.ac.uk

**J. Pym**

Affiliation:
Department of Pure Mathematics, University of Sheffield, Sheffield S3 7RH, England

DOI:
https://doi.org/10.1090/S0002-9947-99-02273-4

Keywords:
weakly almost periodic,
semigroup compactification,
idempotent

Received by editor(s):
June 16, 1997

Published electronically:
July 20, 1999

Article copyright:
© Copyright 1999
American Mathematical Society