Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Automorphism scheme of a finite field extension


Author: Pedro J. Sancho de Salas
Journal: Trans. Amer. Math. Soc. 352 (2000), 595-608
MSC (1991): Primary 14L27
Published electronically: May 3, 1999
MathSciNet review: 1615958
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $k\to K$ be a finite field extension and let us consider the automorphism scheme $Aut_kK$. We prove that $Aut_kK$ is a complete $k$-group, i.e., it has trivial centre and any automorphism is inner, except for separable extensions of degree 2 or 6. As a consequence, we obtain for finite field extensions $K_1, K_2$ of $k$, not being separable of degree 2 or 6, the following equivalence:

\begin{equation*}K_1\simeq K_2 \Leftrightarrow Aut_kK_1\simeq Aut_kK_2.\end{equation*}


References [Enhancements On Off] (What's this?)

  • 1. Lucile Bégueri, Schéma d’automorphisms. Application à l’étude d’extensions finies radicielles, Bull. Sci. Math. (2) 93 (1969), 89–111 (French). MR 0257047 (41 #1701)
  • 2. Stephen U. Chase, On the automorphism scheme of a purely inseparable field extension, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York, 1972, pp. 75–106. MR 0354629 (50 #7107)
  • 3. Stephen U. Chase, Infinitesimal group scheme actions on finite field extensions, Amer. J. Math. 98 (1976), no. 2, 441–480. MR 0424773 (54 #12731)
  • 4. Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local\ par Michiel Hazewinkel. MR 0302656 (46 #1800)
  • 5. Schémas en groupes. I: Propriétés générales des schémas en groupes, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 151, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274458 (43 #223a)
    Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 152, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274459 (43 #223b)
    Schémas en groupes. III: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck. Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). MR 0274460 (43 #223c)
  • 6. A. Grothendieck. Fondements de la Géométrie Algébrique (Extraits du Séminaire Bourbaki 1957-1962), Technique de descente et théorèmes d'existence en géométrie algébrique I. Paris (1962).
  • 7. Alexander Grothendieck, Fondements de la géométrie algébrique. [Extraits du Séminaire Bourbaki, 1957–1962.], Secrétariat mathématique, Paris, 1962 (French). MR 0146040 (26 #3566)
  • 8. O. Hölder. Bildung Zusammengesetzter Gruppen. Math. Ann. 46 (1895) pp. 321-422.
  • 9. Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). MR 0417149 (54 #5209)
  • 10. Franz Pauer, Spezielle Algebren und transitive Operationen, Math. Z. 160 (1978), no. 2, 103–134 (German). MR 0568874 (58 #27939)
  • 11. Günter Pickert, Eine Normalform für endliche reininseparable Körpererweiterungen, Math. Z. 53 (1950), 133–135 (German). MR 0037837 (12,316a)
  • 12. Richard Rasala, Inseparable splitting theory, Trans. Amer. Math. Soc. 162 (1971), 411–448. MR 0284421 (44 #1648), http://dx.doi.org/10.1090/S0002-9947-1971-0284421-2
  • 13. Joseph J. Rotman, The theory of groups. An introduction, 2nd ed., Allyn and Bacon, Inc., Boston, Mass., 1973. Allyn and Bacon Series in Advanced Mathematics. MR 690593 (50 #2315)
  • 14. P. Sancho. Differentially homogeneous algebras. (preprint).
  • 15. Stephen S. Shatz, Galois theory, Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. One), Springer, Berlin, 1969, pp. 146–158. MR 0249410 (40 #2655)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14L27

Retrieve articles in all journals with MSC (1991): 14L27


Additional Information

Pedro J. Sancho de Salas
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06071, Spain
Email: sancho@unex.es

DOI: http://dx.doi.org/10.1090/S0002-9947-99-02361-2
PII: S 0002-9947(99)02361-2
Keywords: Finite field extension, automorphism, complete
Received by editor(s): October 31, 1997
Published electronically: May 3, 1999
Additional Notes: This paper is part of the author’s dissertation at the Universidad de Salamanca under the supervision of J. B. Sancho de Salas.
Article copyright: © Copyright 1999 American Mathematical Society