Group actions and group extensions

Author:
Ergün Yalçin

Journal:
Trans. Amer. Math. Soc. **352** (2000), 2689-2700

MSC (1991):
Primary 57S25; Secondary 20J06, 20C15

Published electronically:
February 24, 2000

MathSciNet review:
1661282

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study finite group extensions represented by special cohomology classes. As an application, we obtain some restrictions on finite groups which can act freely on a product of spheres or on a product of real projective spaces. In particular, we prove that if acts freely on , then .

**1.**A. Adem and D.J. Benson,*Abelian groups acting on products of spheres*, Math. Z.**228**(1998), 705-712. CMP**99:01****2.**Alejandro Adem and William Browder,*The free rank of symmetry of (𝑆ⁿ)^{𝑘}*, Invent. Math.**92**(1988), no. 2, 431–440. MR**936091**, 10.1007/BF01404462**3.**Christopher Allday,*Elementary abelian 𝑝-group actions on lens spaces*, Topology Hawaii (Honolulu, HI, 1990) World Sci. Publ., River Edge, NJ, 1992, pp. 1–11. MR**1181477****4.**David J. Benson and Jon F. Carlson,*Complexity and multiple complexes*, Math. Z.**195**(1987), no. 2, 221–238. MR**892053**, 10.1007/BF01166459**5.**William Browder,*Cohomology and group actions*, Invent. Math.**71**(1983), no. 3, 599–607. MR**695909**, 10.1007/BF02095996**6.**Kenneth S. Brown,*Cohomology of groups*, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR**1324339****7.**Gunnar Carlsson,*On the nonexistence of free actions of elementary abelian groups on products of spheres*, Amer. J. Math.**102**(1980), no. 6, 1147–1157. MR**595008**, 10.2307/2374182**8.**Gunnar Carlsson,*On the rank of abelian groups acting freely on (𝑆ⁿ)^{𝑘}*, Invent. Math.**69**(1982), no. 3, 393–400. MR**679764**, 10.1007/BF01389361**9.**Larry W. Cusick,*Elementary abelian 2-groups that act freely on products of real projective spaces*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 728–730. MR**687651**, 10.1090/S0002-9939-1983-0687651-4**10.**Leonard Evens,*The cohomology ring of a finite group*, Trans. Amer. Math. Soc.**101**(1961), 224–239. MR**0137742**, 10.1090/S0002-9947-1961-0137742-1**11.**Daniel H. Gottlieb, Kyung B. Lee, and Murad Özaydin,*Compact group actions and maps into 𝐾(𝜋,1)-spaces*, Trans. Amer. Math. Soc.**287**(1985), no. 1, 419–429. MR**766228**, 10.1090/S0002-9947-1985-0766228-2**12.**Marvin J. Greenberg,*Lectures on forms in many variables*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0241358****13.**Howard Hiller, Zbigniew Marciniak, Chih-Han Sah, and Andrzej Szczepański,*Holonomy of flat manifolds with 𝑏₁=0. II*, Quart. J. Math. Oxford Ser. (2)**38**(1987), no. 150, 213–220. MR**891616**, 10.1093/qmath/38.2.213**14.**Joseph J. Rotman,*An introduction to the theory of groups*, 4th ed., Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995. MR**1307623**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
57S25,
20J06,
20C15

Retrieve articles in all journals with MSC (1991): 57S25, 20J06, 20C15

Additional Information

**Ergün Yalçin**

Affiliation:
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Address at time of publication:
Department of Mathematics, Indiana University, Bloomington, Indiana 47405

Email:
eyalcin@math.indiana.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02485-5

Keywords:
Group extensions,
special classes,
products of spheres,
cohomology of groups

Received by editor(s):
January 30, 1998

Published electronically:
February 24, 2000

Additional Notes:
Partially supported by NATO grants of the Scientific and Technical Research Council of Turkey

Article copyright:
© Copyright 2000
American Mathematical Society