Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rigidity of Coxeter groups


Authors: Stratos Prassidis and Barry Spieler
Journal: Trans. Amer. Math. Soc. 352 (2000), 2619-2642
MSC (1991): Primary 57S25, 57N70, 20F55, 57S30
DOI: https://doi.org/10.1090/S0002-9947-00-02574-5
Published electronically: March 7, 2000
MathSciNet review: 1695035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $W$ be a Coxeter group acting properly discontinuously and cocompactly on manifolds $N$ and $M ({\partial}M = {\emptyset})$ such that the fixed point sets of finite subgroups are contractible. Let $f: (N, {\partial}N) \to (M{\times}D^k, M{\times}S^{k-1})$ be a $W$-homotopy equivalence which restricts to a $W$-homeomorphism on the boundary. Under an assumption on the three dimensional fixed point sets, we show that then $f$ is $W$-homotopic to a $W$-homeomorphism.


References [Enhancements On Off] (What's this?)

  • 1. M. Bestvina, The virtual cohomological dimension of Coxeter groups', Geometric Group Theory Vol. 1, LMS Lecture Notes 181, 19-23. MR 94g:20056
  • 2. A. Borel and J-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48, 436 - 491 (1973). MR 52:8337
  • 3. N. Bourbaki, Groupes et algèbres de Lie, Ch. 4-6, Hermann, Paris, 1968. MR 39:1590
  • 4. B. Brink and R. B. Howlett, A finiteness property and an automatic structure for Coxeter groups, Math. Ann. 296 179 - 190 (1993). MR 94d:20045
  • 5. K. S. Brown, Buildings, Springer-Verlag, New York, 1989. MR 90e:20001
  • 6. K. S. Brown, Cohomology of groups, Springer-Verlag, New York, 1982. MR 83k:20002
  • 7. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66, 74 - 76 (1960). MR 22:8470b
  • 8. R. Churney and M. Davis, When is a Coxeter system determined by its Coxeter group?, preprint (1997).
  • 9. F. X. Connolly and T. Kozniewski, Finiteness properties of classifying spaces of proper $\Gamma$-actions, J. of Pure and Applied Alg. 41, 17 - 36 (1986). MR 87j:57026
  • 10. F. X. Connolly and T. Kozniewski, Rigidity and crystallographic groups I, Invent. Math. 99, 25 - 49 (1990). MR 91g:57019
  • 11. F. X. Connolly and T. Kozniewski, Examples of lack of rigidity in crystallographic groups, in Algebraic Topology Poznan 1989, Lecture Notes in Math. no. 1474 139-145, Spinger-Verlag, New York, 1991. MR 92g:57045
  • 12. H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. 35, 588 - 621 (1934).
  • 13. M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. 117, 293 - 324 (1983). MR 86d:57025
  • 14. M. W. Davis, Some aspherical manifolds, Duke Math. J. 55, 105 - 139 (1987). MR 88j:57044
  • 15. M. W. Davis, Nonpositive curvature and reflection groups, Handbook of Geometric Topology, (eds. R. J. Daverman and R. B. Sher), Elsevier (to appear).
  • 16. M. W. Davis, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (1998), 297-314; 95 (1998), 635. MR 99b:20067; CMP 99:06
  • 17. V. V. Deodhar, On the root system of a Coxeter group, Comm. Algebra 10, 611 - 630 (1982). MR 83j:20052a
  • 18. A. N. Dranishnikov, On the virtual cohomological dimensions of Coxeter groups, Proc. Amer. Math. Soc. 125 (1997), 1885-1891. MR 98d:55001
  • 19. A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972. MR 54:3685
  • 20. M. H. Freedman, The topology of four-dimensional manifolds, J. Diff. Geom. 17, 357 - 453 (1982). MR 84b:57006
  • 21. M. H. Freedman and F. Quinn, Topology of 4-manifolds, Princeton University Press, Princeton, New Jersey 1990. MR 94m:57042
  • 22. J. Harlander and H. Meinert, Higher generation subgroup sets and the virtual cohomological dimension of graph products of finite groups, J. London Math. Soc. 53, 99 - 117 (1996). MR 96m:20083
  • 23. H. Hiller, Geometry of Coxeter Groups, Research Notes in Mathematics, No. 54, Pitman, Boston, 1982. MR 83h:14045
  • 24. J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, 1990. MR 92h:20002
  • 25. G. Moussong, Hyperbolic Coxeter groups, Ph.D. Thesis, Ohio State University, 1988.
  • 26. E. Rosas, Rigidity theorems for right angled reflection groups, Trans. Amer. Math. Soc. 308, 837 - 848 (1988). MR 89k:57081
  • 27. J-P. Serre, Cohomologie des groupes discrets, in Prospects in Mathematics, Ann. Math. Studies Vol. 70, 77 - 169 (1971), Princeton University Press, Princeton. MR 54:10491
  • 28. M. Steinberger, The equivariant topological $h$-cobordism theorem, Invent. Math. 91, 61 - 104 (1988). MR 89e:57015
  • 29. M. Steinberger and J. West, Equivariant $h$-cobordisms and finiteness obstructions, Bull. Amer. Math. Soc. 12, 217 - 220 (1985). MR 86j:57019
  • 30. E. Straume, The topological version of groups generated by reflections, Math. Z. 176, 429 - 446 (1981). MR 82d:20047
  • 31. R. Strebel, A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52, 317 - 324 (1977). MR 56:15793
  • 32. J. Tits, Structures et groupes de Weyl, Sém. Bourbaki (1964/65), Exp. 288, Secrétariat Mathématique, Paris, 1966. MR 33:5420l; MR 99f:00041
  • 33. J. Tits, Sur le groupe des automorphismes de certain groupes de Coxeter, J. Algebra 113, 346-357 (1988). MR 89b:20077
  • 34. E. B. Vinberg, Discrete linear groups generated by reflections, Math USSR Izvestija 5, 1083 - 1119 (1971). MR 46:1922
  • 35. C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 55:4217
  • 36. S. Weinberger, The topological classification of stratified spaces, Univ. of Chicago Press, 1994. MR 96b:57024

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57S25, 57N70, 20F55, 57S30

Retrieve articles in all journals with MSC (1991): 57S25, 57N70, 20F55, 57S30


Additional Information

Stratos Prassidis
Affiliation: Coordenação de Pós-Graduação em Matemática, Rua Mário Santos Braga, Valonguinho Niterói, RJ 24020-005, Brazil

Barry Spieler
Affiliation: Division of Science and Mathematics, Birmingham-Southern College, Birmingham, Alabama 35254

DOI: https://doi.org/10.1090/S0002-9947-00-02574-5
Keywords: Coxeter groups, reflection groups, rigidity theorems, equivariant topological Whitehead group
Received by editor(s): November 14, 1997
Published electronically: March 7, 2000
Additional Notes: The first author was supported in part by Vanderbilt University Summer Research Fellowship, and by National Science Foundation Grant DMS-9504479
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society