Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fundamental groups of moduli and the Grothendieck-Teichmüller group


Authors: David Harbater and Leila Schneps
Journal: Trans. Amer. Math. Soc. 352 (2000), 3117-3148
MSC (1991): Primary 11R32, 14E20, 14H10; Secondary 20F29, 20F34, 32G15
DOI: https://doi.org/10.1090/S0002-9947-00-02347-3
Published electronically: March 31, 2000
MathSciNet review: 1615979
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let ${\mathcal{M}}_{0,n}$ denote the moduli space of Riemann spheres with $n$ ordered marked points. In this article we define the group $\operatorname{Out}^{\sharp }_{n}$ of quasi-special symmetric outer automorphisms of the algebraic fundamental group $\widehat \pi _{1}({\mathcal{M}}_{0,n})$ for all $n\ge 4$ to be the group of outer automorphisms respecting the conjugacy classes of the inertia subgroups of $\widehat \pi _{1}({\mathcal{M}}_{0,n})$ and commuting with the group of outer automorphisms of $\widehat \pi _{1}({\mathcal{M}}_{0,n})$ obtained by permuting the marked points. Our main result states that $\operatorname{Out}^{\sharp }_{n}$ is isomorphic to the Grothendieck-Teichmüller group $\widehat {\operatorname{GT}}$for all $n\ge 5$.


References [Enhancements On Off] (What's this?)

  • [B] G.V. Belyi, On Galois extensions of a maximal cyclotomic field, Math. USSR Izvestija, Vol. 14 No. 2 (1980), pp.247-256. MR 80f:12008
  • [D] V.G. Drinfel'd, On quasitriangular quasi-Hopf algebras and a group closely connected with $\operatorname {Gal}(\overline {\mathbb Q}/\mathbb Q)$, Leningrad Math. J. Vol. 2 (1991), No. 4, 829-860. MR 94f:16047
  • [F] M. Fried, Fields of definition of function fields and Hurwitz families -- groups as Galois groups, Comm. Alg. 5 (1977), 17-82. MR 56:12006
  • [FJ] M. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik III, 11, Springer-Verlag, Heidelberg, 1986. MR 89b:12010
  • [G1] A. Grothendieck, Esquisse d'un Programme, 1984 manuscript, finally published in Geometric Galois Actions, L. Schneps, P. Lochak, eds., London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp.5-48; English transl., ibid., pp. 243-283. MR 99c:14034
  • [G2] A. Grothendieck, La longue marche in à travers la théorie de Galois, 1981 manuscript, University of Montpellier preprint series 1996, edited by J. Malgoire.
  • [H] D. Harbater, Fundamental groups and embedding problems in characteristic $p$, in Recent Developments in the Inverse Galois Problem (M. Fried, et al., eds.), AMS Contemporary Mathematics Series, vol. 186, 1995, pp.353-369. MR 97b:14035
  • [HS] D. Harbater, L. Schneps, Approximating Galois orbits as dessins, in Geometric Galois Actions, London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp.205-230. MR 99f:14031
  • [I1] Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. Math. 123 (1986), 43-106. MR 87c:11055
  • [I2] Y. Ihara, Automorphisms of pure sphere braid groups and Galois representations, in The Grothendieck Festschrift, Vol. II, Progress in Mathematics 87, Birkhäuser, 1990, 353-373. MR 92k:20077
  • [I3] Y. Ihara, On the stable derivation algebra associated with some braid groups, Israel J. Math. 80 (1992), 135-153. MR 95f:17025
  • [I4] Y. Ihara, Braids, Galois groups, and some arithmetic functions, Proceedings of the ICM, Kyoto, Japan (1990), 99-120. MR 95c:11073
  • [I5] Y. Ihara, On the embedding of ${\rm Gal}(\overline{\mathbb Q}/{\mathbb Q})$into ${\widehat {\operatorname {GT}}}$, in The Grothendieck Theory of Dessins d'Enfants, L. Schneps, ed., Cambridge Univ. Press, 1994, pp. 289-321. MR 96b:14014
  • [IM] Y. Ihara, M. Matsumoto, On Galois Actions of Profinite Completions of Braid Groups, in Recent Developments in the Inverse Galois Problem, M. Fried et al., eds., Contemp. Math., vol. 186, AMS, 1995, pp.173-200. MR 97c:12003
  • [IN] Y. Ihara, H. Nakamura, Some illustrative examples for anabelian geometry in high dimensions, in Geometric Galois Actions, London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp.127-138. MR 99b:14021
  • [LS] P. Lochak, L. Schneps, The Grothendieck-Teichmüller group as automorphisms of braid groups, in The Grothendieck Theory of Dessins d'Enfants, L. Schneps, ed., London Math. Soc. Lecture Note Series 200, 1994, pp.323-358. MR 95k:20058
  • [N1] H. Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus, J. Math. Sci. Univ. Tokyo 1 (1994), 71-136. MR 96e:14021
  • [N2] H. Nakamura, Galois rigidity of profinite fundamental groups, Sugaku 47 (1995), 1-17; English transl., Sugaku Expositions 10 (1997), 195-215. MR 98d:14027
  • [N3] H. Nakamura, Galois representations in the profinite Teichmüller modular group, in Geometric Galois Actions, London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp. 159-173. MR 98k:14036
  • [N4] H. Nakamura, Limits of Galois representations in fundamental groups along maximal degeneration of marked curves: I, Amer. J. Math. 121 (1999), 315-358. CMP 99:10
  • [P] F. Pop, Étale Galois covers of smooth affine curves, Invent. Math. 120 (1995), 555-578. MR 96k:14011
  • [S] L. Schneps, The Grothendieck-Teichmüller group ${\widehat {\operatorname {GT}}}$: a survey, in Geometric Galois Actions, London Math. Soc. Lecture Notes 242, Cambridge University Press, 1997, pp.183-203. MR 99a:14043

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11R32, 14E20, 14H10, 20F29, 20F34, 32G15

Retrieve articles in all journals with MSC (1991): 11R32, 14E20, 14H10, 20F29, 20F34, 32G15


Additional Information

David Harbater
Affiliation: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6395
Email: harbater@math.upenn.edu

Leila Schneps
Affiliation: Faculté des Sciences, Université de Franche-Comté, 25030 Besançon Cedex, France
Email: Leila.Schneps@ens.fr

DOI: https://doi.org/10.1090/S0002-9947-00-02347-3
Keywords: Moduli space, Galois actions, fundamental groups, Grothendieck-Teichm\"{u}ller group, mapping class group
Received by editor(s): July 21, 1997
Received by editor(s) in revised form: February 12, 1998
Published electronically: March 31, 2000
Additional Notes: Supported in part by NSF Grant DMS94-00836.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society