A reduced Tits quadratic form and tameness of three-partite subamalgams of tiled orders

Author:
Daniel Simson

Journal:
Trans. Amer. Math. Soc. **352** (2000), 4843-4875

MSC (2000):
Primary 16G30, 16G50, 15A21; Secondary 15A63, 16G60

DOI:
https://doi.org/10.1090/S0002-9947-00-02575-7

Published electronically:
June 8, 2000

MathSciNet review:
1695036

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Let be a complete discrete valuation domain with the unique maximal ideal . We suppose that is an algebra over an algebraically closed field and . Subamalgam -suborders of a tiled -order are studied in the paper by means of the integral Tits quadratic form . A criterion for a subamalgam -order to be of tame lattice type is given in terms of the Tits quadratic form and a forbidden list of minor -suborders of presented in the tables.

**[1]**D. M. Arnold, Representations of partially ordered sets and abelian groups,*Contemporary Math.***87**(1989), 91-109. MR**90j:20118****[2]**D. M. Arnold and M. Dugas, Block rigid almost completely decomposable groups and lattices over multiple pullback rings,*J. Pure Appl. Alg.***87**(1993), 105-121. MR**94f:20102****[3]**D. M. Arnold, F. Richman and C. Vinsonhaler, Representations of finite posets and valuated groups,*J. Algebra***155**(1993), 110-126. MR**94d:20064****[4]**K. Bongartz, A criterion for finite representation type,*Math. Ann.***269**(1984), 1-12. MR**86k:16023****[5]**Ch. W. Curtis and I. Reiner,Vol. I*``Methods of Representation Theory''*,*,*, Wiley Classics Library Edition, New York, 1990. MR**90k:20001****[6]**P. Dowbor and S. Kasjan, Galois covering technique and tame non-simply connected posets of polynomial growth,*J. Pure Appl. Algebra***147**(2000), 1-24.**[7]**P. Dowbor and A. Skowronski, On Galois coverings of tame algebras,*Arch. Math.***44**(1985), 522-529. MR**87a:16035****[8]**P. Dowbor and A. Skowronski, Galois coverings of representation-infinite algebras,*Comment. Math. Helv.***62**(1987), 311-337. MR**88m:16020****[9]**J. A. Drozd and M. G. Greuel, Tame-wild dichotomy for Cohen-Macaulay modules,*Math. Ann.***294**(1992), 387-394. MR**93h:16023****[10]**Y. A. Drozd, Cohen-Macaulay modules and vector bundles, Proc. Euroconference ``Interactions between Ring Theory and Representations of Algebras'', Murcia, 12-17 January 1998,*Lecture Notes in Pure and Appl. Math.*(to appear).**[11]**E. L. Green and I. Reiner, Integral representations and diagrams,*Michigan Math. J.***25**(1978), 53-84. MR**80g:16032****[12]**J. Haefner and L. Klingler, Special quasi-triads and integral group rings of finite representation type, I and II,*J. Algebra***158**(1993), 279-374. MR**94k:16028****[13]**H.-J. von Höhne and D. Simson, Bipartite posets of finite prinjective type,*J. Algebra***201**(1998), 86-114. MR**99h:16027****[14]**S. Kasjan, Minimal bipartite algebras of infinite prinjective type with prin-preprojective component,*Colloquium Math.***76**(1998), 295-317. MR**99b:16024****[15]**S. Kasjan and D. Simson, Varieties of poset representations and minimal posets of wild prinjective type,*in*Proceedings of the Sixth International Conference on Representations of Algebras, vol. 14,*Canadian Mathematical Society Conference Proceedings*, 1993, pp. 245-284. MR**94e:16025****[16]**S. Kasjan and D. Simson, Fully wild prinjective type of posets and their quadratic forms,*J. Algebra***172**(1995), 506-529. MR**96m:16020****[17]**S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets I,*J. Pure Appl. Algebra***106**(1996), 307-330. MR**97d:16018****[18]**S. Kasjan and D. Simson, Tame prinjective type and Tits form of two-peak posets II,*J. Algebra***187**(1997), 71-96. MR**98h:16020****[19]**S. Kasjan and D. Simson, A subbimodule reduction, a peak reduction functor and tame prinjective type,*Bull. Pol. Acad. Sci. Math.***45**(1997), 89-107. MR**99a:16009****[20]**J. Kosakowska and D. Simson, On Tits form and prinjective representations of posets of finite prinjective type,*Comm. Algebra***26**(1998), 1613-1623. MR**99d:16013****[21]**L. A. Nazarova, Partially ordered sets of infinite type,*Izv. Akad. Nauk SSSR***39**(1975), 963-991; English transl., Math. USSR Izv.**9**(1975), 911-938. MR**55:10604****[22]**L. A. Nazarova and V. A. Roiter, Representations of bipartite completed posets,*Comment. Math. Helv.***63**(1988), 498-526. MR**89m:06003****[23]**J. A. de la Peña and D. Simson, Prinjective modules, reflection functors, quadratic forms and Auslander-Reiten sequences,*Trans. Amer. Math. Soc.***329**(1992), 733-753. MR**92e:16005****[24]**I. Reiner,, Academic Press, London, 1975. MR*``Maximal Orders''***52:13910****[25]**K. W. Roggenkamp, Auslander-Reiten species of Bäckstrom orders,*J. Algebra***85**(1983), 449-476. MR**85g:16005****[26]**K. W. Roggenkamp, Lattices over subhereditary orders and socle-projective modules,*J. Algebra***121**(1989), 40-67. MR**90h:16016****[27]**C. M. Ringel and K. W. Roggenkamp, Diagrammatic methods in the representation theory of orders,*J. Algebra***60**(1979), 11-42. MR**81b:16008****[28]**D. Simson, Socle reductions and socle projective modules,*J. Algebra***103**(1986), 18-68. MR**88a:16058****[29]**D. Simson, Representations of bounded stratified posets, coverings and socle projective modules,*in ``Topics in Algebra, Part I: Rings and Representations of Algebras''*, Banach Center Publications, vol.**26**, PWN, Warszawa, 1990, pp. 499-533. MR**93g:16019****[30]**D. Simson, A splitting theorem for multipeak path algebras,*Fund. Math.***138**(1991), 113-137. MR**93a:16007****[31]**D. Simson, Right peak algebras of two-separate stratified posets, their Galois coverings and socle projective modules,*Comm. Algebra***20**(1992), 3541-3591. MR**94f:16031****[32]**D. Simson,, Gordon & Breach Science Publishers, New York, 1992. MR*``Linear Representations of Partially Ordered Sets and Vector Space Categories''*, Algebra, Logic and Applications, Vol. 4**95g:16013****[33]**D. Simson, Posets of finite prinjective type and a class of orders,*J. Pure Appl. Algebra***90**(1993), 77-103. MR**95b:16011****[34]**D. Simson, On representation types of module subcategories and orders,*Bull. Pol. Acad. Sci., Math.***41**(1993), 77-93. MR**97g:16024****[35]**D. Simson, A reduction functor, tameness and Tits form for a class of orders,*J. Algebra***174**(1995), 430-452. MR**96d:16022****[36]**D. Simson, Triangles of modules and non-polynomial growth,*C. R. Acad. Sci. Paris*, Série I**321**(1995), 33-38. MR**96g:16015****[37]**D. Simson, Representation embedding problems, categories of extensions and prinjective modules,*in*Proceedings of the Seventh International Conference on Representations of Algebras,*Canadian Mathematical Society Conference Proceedings*, Vol.**18**, 1996, 601-639. MR**98g:16011****[38]**D. Simson, Socle projective representations of partially ordered sets and Tits quadratic forms with application to lattices over orders,*in*Proceedings of the Conference on Abelian Groups and Modules, Colorado Springs, August 1995,*Lecture Notes in Pure and Appl. Math.*, Vol.**182**, 1996, pp. 73-111. MR**97j:16024****[39]**D. Simson, Prinjective modules, propartite modules, representations of bocses and lattices over orders,*J. Math. Soc. Japan***49**(1997), 31-68. MR**98e:16015****[40]**D. Simson, Three-partite subamalgams of tiled orders of finite lattice type,*J. Pure Appl. Algebra***138**(1999), 151-184. CMP**99:12****[41]**D. Simson, Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders,*in*Proc. AMS-IMS-SIAM Summer Research Conference ``Trends in the Representation Theory of Finite Dimensional Algebras'', The University of Washington, July 20-24, 1997, Contemporary Math.**229**(1998), 307-342. CMP**99:09****[42]**D. Simson, Tame three-partite subamalgams of tiled orders of polynomial growth,*Colloq. Math.***81**(1999), 237-262.**[43]**D. Simson, Cohen-Macaulay modules over classical orders*, Proc. Euroconference ``Interactions between Ring Theory and Representations of Algebras'', Murcia, 12-17 January 1998*,*Lecture Notes in Pure and Appl. Math.*(to appear).**[44]**Y. Yoshino, ``Cohen-Macaulay Modules over Cohen-Macaulay Rings'', London Math. Soc. Lecture Notes Series, Vol.**146**, Cambridge University Press, 1990. MR**92b:13016****[45]**A. G. Zavadskij and V. V. Kirichenko, Torsion-free modules over prime rings, Zap. Naychn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)**57**(1976), 100-116; English tranl., J. Soviet Math.**11**(1979), 598-612. MR**58:11026****[46]**A. G. Zavadskij and V. V. Kirichenko, Semimaximal rings of finite type,*Mat. Sbornik***103**(1977), 323-345; English transl., Math. USSR Sb.**32**(1997), 273-291. MR**56:15706****[47]**A. G. Zavadskij, Representations of partially ordered sets of finite growth, Kievskij Ordena Trudovovo Krasnovo Znameni Inzinerno-Stroitelnyi Institut (KISI), Dep. Ukr. NIINTI, No. 413-Yk-D83, Kiev, 1983, pp. 1-76 (Russian).**[48]**A. G. Zavadskij, Differentiation algorithm and classification of representations, Izv. Akad. Nauk SSSR, Ser. Mat.**55**(1991), 1007-1048 (in Russian); English transl., Math. USSR Izvestia**39**(1992), 975-1012.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16G30,
16G50,
15A21,
15A63,
16G60

Retrieve articles in all journals with MSC (2000): 16G30, 16G50, 15A21, 15A63, 16G60

Additional Information

**Daniel Simson**

Affiliation:
Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul. Chopina 12/18, 87-100 Toruń, Poland

Email:
simson@mat.uni.torun.pl

DOI:
https://doi.org/10.1090/S0002-9947-00-02575-7

Received by editor(s):
November 12, 1997

Published electronically:
June 8, 2000

Additional Notes:
Partially supported by Polish KBN Grant 2 P0 3A 012 16.

Dedicated:
Dedicated to Klaus Roggenkamp on the occasion of his 60th birthday

Article copyright:
© Copyright 2000
American Mathematical Society