Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Traces on algebras of parameter dependent pseudodifferential operators and the eta-invariant

Authors: Matthias Lesch and Markus J. Pflaum
Journal: Trans. Amer. Math. Soc. 352 (2000), 4911-4936
MSC (2000): Primary 58G15
Published electronically: June 28, 2000
MathSciNet review: 1661258
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We identify Melrose's suspended algebra of pseudodifferential operators with a subalgebra of the algebra of parametric pseudodifferential operators with parameter space $\mathbb{R} $. For a general algebra of parametric pseudodifferential operators, where the parameter space may now be a cone $\Gamma\subset\mathbb{R} ^p$, we construct a unique ``symbol valued trace'', which extends the $L^2$-trace on operators of small order. This construction is in the spirit of a trace due to Kontsevich and Vishik in the nonparametric case. Our trace allows us to construct various trace functionals in a systematic way. Furthermore, we study the higher-dimensional eta-invariants on algebras with parameter space $\mathbb{R} ^{2k-1}$. Using Clifford representations we construct for each first order elliptic differential operator a natural family of parametric pseudodifferential operators over $\mathbb{R} ^{2k-1}$. The eta-invariant of this family coincides with the spectral eta-invariant of the operator.

References [Enhancements On Off] (What's this?)

  • 1. N. BERLINE, E. GETZLER AND M. VERGNE: Heat kernels and Dirac operators. Grundlehren der Mathematischen Wissenschaften, vol. 298, Springer-Verlag, Berlin-Heidelberg-New York, 1992. MR 94e:58130
  • 2. R. BOTT AND L. W. TU: Differential forms in algebraic topology. Springer-Verlag, Berlin-Heidelberg-New York, 1982. MR 83i:57016
  • 3. A. CONNES: Noncommutative geometry. Academic Press, San Diego, 1994. MR 95j:46063
  • 4. J. J. DUISTERMAAT: Fourier Integral Operators. Birkhäuser, Basel, 1996. MR 96m:58245
  • 5. P. B. GILKEY: Invariance theory, the heat-equation, and the Atiyah-Singer index theorem. second ed., CRC Press, Boca Raton, 1995. MR 98b:58156
  • 6. A. GRIGIS AND J. SJØSTRAND: Microlocal Analysis for Differential Operators. London Mathematical Society Lecture Note Series, vol. 196, Cambridge University Press, 1994. MR 95d:35009
  • 7. G. GRUBB AND R. T. SEELEY: Weakly parametric pseudodifferential operators and Atiyah-Patodi-Singer boundary problems. Invent. Math. 121 (1995), 481-529. MR 95k:58216
  • 8. V. GUILLEMIN:
    A new proof of Weyl's formula on the asymptotic distribution of eigenvalues. Adv. in Math. 55 (1985), 131-160. MR 86i:58135
  • 9. M. KONTSEVICH AND S. VISHIK: Determinants of elliptic pseudo-differential operators. Preprint, 1994.
  • 10. M. KONTSEVICH AND S. VISHIK: Geometry of determinants of elliptic operators. In: Functional analysis on the eve of the 21st century. Volume I (S. Gindikin et al., editor). In honor of the eightieth birthday of I. M. Gelfand. Proceedings of the conference, held at Rutgers University, New Brunswick, NJ, October 24-27, 1993. Boston: Birkhäuser, Prog. Math. 131, 173-197 (1995). MR 96m:58264
  • 11. H. B. LAWSON AND M. L. MICHELSOHN: Spin geometry. Princeton University Press, Princeton, NJ, 1989. MR 91g:53001
  • 12. M. LESCH: On the noncommutative residue for pseudodifferential operators with $\log$-polyhomogeneous symbols. Ann. Global Anal. Geom 17 (1999), 151-187. CMP 99:09
  • 13. M. LESCH: Operators of Fuchs type, conical singularities, and asymptotic methods. Teubner Texte zur Mathematik, vol. 136, B. G. Teubner, Leipzig, 1997. MR 98d:58174
  • 14. M. LESCH AND J. TOLKSDORF: On the determinant of one-dimensional elliptic boundary value problems. SFB Commun. Math. Phys. 193 (1998), 643-660. CMP 98:13
  • 15. R. B. MELROSE: The eta invariant and families of pseudodifferential operators. Math. Res. Lett. 2 (1995), 541-561. MR 96h:58169
  • 16. R.B. MELROSE AND V. NISTOR: $C^*$-algebras of B-pseudodifferential operators and an ${\mathbb{R} }^k$-equivariant index theorem. Preprint, 1996; funct-an/9610003 .
  • 17. R.B. MELROSE AND V. NISTOR: Homology of pseudodifferential operators I. Manifolds with boundary. Preprint, 1996; funct-an/9606005.
  • 18. R.B. MELROSE AND V. NISTOR: In preparation.
  • 19. M. A. SHUBIN: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin-Heidelberg-New York, 1987. MR 88c:47105
  • 20. M. WODZICKI: Noncommutative residue I: Fundamentals, K-Theory. LNM 1289, Springer-Verlag, Berlin-Heidelberg-New York, 1987. MR 90a:58175

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58G15

Retrieve articles in all journals with MSC (2000): 58G15

Additional Information

Matthias Lesch
Affiliation: Institut für Mathematik, Humboldt-Universität, Unter den Linden 6, 10099 Berlin, Germany
Address at time of publication: Department of Mathematics, The University of Arizona, Tucson, Arizona 85721-0089

Markus J. Pflaum
Affiliation: Institut für Mathematik, Humboldt-Universität, Unter den Linden 6, 10099 Berlin, Germany

Received by editor(s): September 15, 1998
Received by editor(s) in revised form: November 1, 1998
Published electronically: June 28, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society