Optimal factorization of Muckenhoupt weights

Author:
Michael Brian Korey

Journal:
Trans. Amer. Math. Soc. **352** (2000), 5251-5262

MSC (1991):
Primary 42B25; Secondary 26D15, 46E30

Published electronically:
July 18, 2000

MathSciNet review:
1694375

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Peter Jones' theorem on the factorization of weights is sharpened for weights with bounds near , allowing the factorization to be performed continuously near the limiting, unweighted case. When and is an weight with bound , it is shown that there exist weights such that both the formula and the estimates hold. The square root in these estimates is also proven to be the correct asymptotic power as .

**1.**R. R. Coifman and C. Fefferman,*Weighted norm inequalities for maximal functions and singular integrals*, Studia Math.**51**(1974), 241–250. MR**0358205****2.**R. Coifman, Peter W. Jones, and José L. Rubio de Francia,*Constructive decomposition of BMO functions and factorization of 𝐴_{𝑝} weights*, Proc. Amer. Math. Soc.**87**(1983), no. 4, 675–676. MR**687639**, 10.1090/S0002-9939-1983-0687639-3**3.**J. García-Cuerva and J. L. Rubio de Francia,*Weighted norm inequalities and related topics*, North-Holland, Amsterdam, New York, and Oxford, 1985. MR**87d:42043****4.**John B. Garnett and Peter W. Jones,*BMO from dyadic BMO*, Pacific J. Math.**99**(1982), no. 2, 351–371. MR**658065****5.**Peter J. Holden,*Extension theorems for functions of vanishing mean oscillation*, Pacific J. Math.**142**(1990), no. 2, 277–295. MR**1042047****6.**Peter W. Jones,*Factorization of 𝐴_{𝑝} weights*, Ann. of Math. (2)**111**(1980), no. 3, 511–530. MR**577135**, 10.2307/1971107**7.**F. John and L. Nirenberg,*On functions of bounded mean oscillation*, Comm. Pure Appl. Math.**14**(1961), 415–426. MR**0131498****8.**M. B. Korey,*Ideal weights: doubling and absolute continuity with asymptotically optimal bounds*, Ph.D. Thesis, University of Chicago, 1995.**9.**M. B. Korey,*Ideal weights: asymptotically optimal versions of doubling, absolute continuity, and mean oscillation*, J. Fourier Anal. Appl.**4**(1998), 491-519. CMP**99:05****10.**Benjamin Muckenhoupt,*Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc.**165**(1972), 207–226. MR**0293384**, 10.1090/S0002-9947-1972-0293384-6**11.**A. Politis,*Sharp results on the relation between weight spaces and BMO*, Ph.D. Thesis, University of Chicago, 1995.**12.**José Luis Rubio de Francia,*Factorization and extrapolation of weights*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), no. 2, 393–395. MR**663793**, 10.1090/S0273-0979-1982-15047-9**13.**José L. Rubio de Francia,*Factorization theory and 𝐴_{𝑝} weights*, Amer. J. Math.**106**(1984), no. 3, 533–547. MR**745140**, 10.2307/2374284**14.**Walter Rudin,*Functional analysis*, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR**0365062****15.**Elias M. Stein,*Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals*, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR**1232192****16.**Kôsaku Yosida,*Functional analysis*, Die Grundlehren der Mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR**0180824**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
42B25,
26D15,
46E30

Retrieve articles in all journals with MSC (1991): 42B25, 26D15, 46E30

Additional Information

**Michael Brian Korey**

Affiliation:
Institut für Mathematik, Universität Potsdam, 14415 Potsdam, Germany

Email:
mike@math.uni-potsdam.de

DOI:
https://doi.org/10.1090/S0002-9947-00-02547-2

Keywords:
Jones' factorization theorem,
bounded mean oscillation,
vanishing mean oscillation,
$A_p$ condition.

Received by editor(s):
February 3, 1999

Published electronically:
July 18, 2000

Article copyright:
© Copyright 2000
American Mathematical Society