Local differentiability of distance functions
Authors:
R. A. Poliquin, R. T. Rockafellar and L. Thibault
Journal:
Trans. Amer. Math. Soc. 352 (2000), 52315249
MSC (1991):
Primary 49J52, 58C06, 58C20; Secondary 90C30
Published electronically:
June 9, 2000
MathSciNet review:
1694378
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Recently Clarke, Stern and Wolenski characterized, in a Hilbert space, the closed subsets for which the distance function is continuously differentiable everywhere on an open ``tube'' of uniform thickness around . Here a corresponding local theory is developed for the property of being continuously differentiable outside of on some neighborhood of a point . This is shown to be equivalent to the proxregularity of at , which is a condition on normal vectors that is commonly fulfilled in variational analysis and has the advantage of being verifiable by calculation. Additional characterizations are provided in terms of being locally of class or such that is convex around for some . Proxregularity of at corresponds further to the normal cone mapping having a hypomonotone truncation around , and leads to a formula for by way of . The local theory also yields new insights on the global level of the ClarkeSternWolenski results, and on a property of sets introduced by Shapiro, as well as on the concept of sets with positive reach considered by Federer in the finite dimensional setting.
 [1]
J.
M. Borwein and J.
R. Giles, The proximal normal formula in Banach
space, Trans. Amer. Math. Soc.
302 (1987), no. 1,
371–381 (English, with French summary). MR 887515
(88m:49013), http://dx.doi.org/10.1090/S00029947198708875155
 [2]
F.
H. Clarke, R.
J. Stern, and P.
R. Wolenski, Proximal smoothness and the lower𝐶²
property, J. Convex Anal. 2 (1995), no. 12,
117–144. MR 1363364
(96j:49014)
 [3]
JeanPhilippe
Vial, Strong and weak convexity of sets and functions, Math.
Oper. Res. 8 (1983), no. 2, 231–259. MR 707055
(84m:90107), http://dx.doi.org/10.1287/moor.8.2.231
 [4]
Alexander
Shapiro, Existence and differentiability of metric projections in
Hilbert spaces, SIAM J. Optim. 4 (1994), no. 1,
130–141. MR 1260410
(94m:90111), http://dx.doi.org/10.1137/0804006
 [5]
Herbert
Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418–491. MR 0110078
(22 #961), http://dx.doi.org/10.1090/S00029947195901100781
 [6]
R.
A. Poliquin and R.
T. Rockafellar, Proxregular functions in variational
analysis, Trans. Amer. Math. Soc.
348 (1996), no. 5,
1805–1838. MR 1333397
(96h:49039), http://dx.doi.org/10.1090/S0002994796015449
 [7]
R.
A. Poliquin and R.
T. Rockafellar, Generalized Hessian properties of regularized
nonsmooth functions, SIAM J. Optim. 6 (1996),
no. 4, 1121–1137. MR 1416532
(97j:49025), http://dx.doi.org/10.1137/S1052623494279316
 [8]
René
Poliquin and Terry
Rockafellar, Secondorder nonsmooth analysis in nonlinear
programming, Recent advances in nonsmooth optimization, World Sci.
Publ., River Edge, NJ, 1995, pp. 322–349. MR 1460008
(98e:49043)
 [9]
R.
Tyrrell Rockafellar and Roger
J.B. Wets, Variational analysis, Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 317, SpringerVerlag, Berlin, 1998. MR 1491362
(98m:49001)
 [10]
C.
Combari, A.
Elhilali Alaoui, A.
Levy, R.
Poliquin, and L.
Thibault, Convex composite functions in Banach
spaces and the primal lowernice property, Proc. Amer. Math. Soc. 126 (1998), no. 12, 3701–3708. MR 1451793
(99b:49016), http://dx.doi.org/10.1090/S000299399804324X
 [11]
René
A. Poliquin, Integration of subdifferentials of nonconvex
functions, Nonlinear Anal. 17 (1991), no. 4,
385–398. MR 1123210
(92j:49008), http://dx.doi.org/10.1016/0362546X(91)90078F
 [12]
René
A. Poliquin, An extension of Attouch’s
theorem and its application to secondorder epidifferentiation of convexly
composite functions, Trans. Amer. Math.
Soc. 332 (1992), no. 2, 861–874. MR 1145732
(93a:49013), http://dx.doi.org/10.1090/S00029947199211457325
 [13]
A.
B. Levy, R.
Poliquin, and L.
Thibault, Partial extensions of Attouch’s
theorem with applications to protoderivatives of subgradient
mappings, Trans. Amer. Math. Soc.
347 (1995), no. 4,
1269–1294. MR 1290725
(95k:49035), http://dx.doi.org/10.1090/S00029947199512907253
 [14]
Lionel
Thibault and Dariusz
Zagrodny, Integration of subdifferentials of lower semicontinuous
functions on Banach spaces, J. Math. Anal. Appl. 189
(1995), no. 1, 33–58. MR 1312029
(95i:49032), http://dx.doi.org/10.1006/jmaa.1995.1003
 [15]
R.
Correa, A.
Jofré, and L.
Thibault, Characterization of lower
semicontinuous convex functions, Proc. Amer.
Math. Soc. 116 (1992), no. 1, 67–72. MR 1126193
(92k:49027), http://dx.doi.org/10.1090/S00029939199211261934
 [16]
Edgar
Asplund, Čebyšev sets in Hilbert
space, Trans. Amer. Math. Soc. 144 (1969), 235–240. MR 0253023
(40 #6238), http://dx.doi.org/10.1090/S00029947196902530237
 [17]
JeanPierre
Aubin and Ivar
Ekeland, Applied nonlinear analysis, Pure and Applied
Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A
WileyInterscience Publication. MR 749753
(87a:58002)
 [18]
Ka
Sing Lau, Almost Chebyshev subsets in reflexive Banach spaces,
Indiana Univ. Math. J. 27 (1978), no. 5,
791–795. MR 0510772
(58 #23286)
 [19]
J.
M. Borwein and H.
M. Strójwas, Proximal analysis and boundaries of closed sets
in Banach space. II. Applications, Canad. J. Math. 39
(1987), no. 2, 428–472. MR 899844
(88f:46034), http://dx.doi.org/10.4153/CJM19870194
 [20]
Frank
H. Clarke, Optimization and nonsmooth analysis, Canadian
Mathematical Society Series of Monographs and Advanced Texts, John Wiley
& Sons, Inc., New York, 1983. A WileyInterscience Publication. MR 709590
(85m:49002)
F.
H. Clarke, Optimization and nonsmooth analysis, 2nd ed.,
Classics in Applied Mathematics, vol. 5, Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1058436
(91e:49001)
 [21]
E.
Asplund and R.
T. Rockafellar, Gradients of convex
functions, Trans. Amer. Math. Soc. 139 (1969), 443–467. MR 0240621
(39 #1968), http://dx.doi.org/10.1090/S0002994719690240621X
 [22]
T. S. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Att. R. Acad. Lincei, Rend. 21 (1935), 562567.
 [23]
Victor
Klee, Convexity of Chevyshev sets, Math. Ann.
142 (1960/1961), 292–304. MR 0121633
(22 #12367)
 [24]
JeanBaptiste
HiriartUrruty, Ensembles de Tchebychev vs.\ ensembles convexes:
l’état de la situation vu via l’analyse convexe non
lisse, Ann. Sci. Math. Québec 22 (1998),
no. 1, 47–62 (French, with English and French summaries). MR 1626398
(99f:49018)
 [25]
Robert
R. Phelps, Convex functions, monotone operators and
differentiability, 2nd ed., Lecture Notes in Mathematics,
vol. 1364, SpringerVerlag, Berlin, 1993. MR 1238715
(94f:46055)
 [1]
 J. M. Borwein and J. R. Giles, The proximal normal formula in Banach space, Trans. Amer. Math. Soc. 302 (1987), 371381. MR 88m:49013
 [2]
 F. H. Clarke, R. J Stern and P. R. Wolenski, Proximal smoothness and the lower property, J. Convex Analysis, 2 (1995), 117144. MR 96j:49014
 [3]
 J.P. Vial, Strong and weak convexity of sets and functions, Math. Ops. Res. 8 (1983), 231259. MR 84m:90107
 [4]
 A. S. Shapiro, Existence and differentiability of metric projections in Hilbert spaces, SIAM J. Optimization 4 (1994), 130141. MR 94m:90111
 [5]
 H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418491. MR 22:961
 [6]
 R. A. Poliquin and R. T. Rockafellar, Proxregular functions in variational analysis, Trans. Amer. Math. Soc. 348 (1996), 18051838. MR 96h:49039
 [7]
 R. A. Poliquin and R. T. Rockafellar, Generalized Hessian properties of regularized nonsmooth functions, SIAM J. Optimization 6 (1996), 11211137. MR 97j:49025
 [8]
 R. A. Poliquin and R. T. Rockafellar, Secondorder nonsmooth analysis in nonlinear programming, Recent Advances in Nonsmooth Optimization (D. Du, L. Qi and R. Womersley, eds.), World Scientific Publishers, 1995, pp. 322350. MR 98e:49043
 [9]
 R. T. Rockafellar and R. J.B. Wets, Variational Analysis, SpringerVerlag, 1997.MR 98m:49001
 [10]
 C. Combari, A. Elhilali Alaoui, A. Levy, R. A. Poliquin and L. Thibault, Convex composite functions in Banach spaces and the primallowernice property, Proc. Amer. Math. Soc. 126 (1998), 37013708. MR 99b:49016
 [11]
 R. A. Poliquin, Integration of subdifferentials of nonconvex functions, Nonlinear Anal. Th. Meth. Appl. 17 (1991), 385398. MR 92j:49008
 [12]
 R. A. Poliquin, An extension of Attouch's Theorem and its application to secondorder epidifferentiation of convexly composite functions, Trans. Amer. Math. Soc. 332 (1992), 861874. MR 93a:49013
 [13]
 A. Levy, R. A. Poliquin and L. Thibault, Partial extension of Attouch's theorem with applications to protoderivatives of subgradient mappings, Trans. Amer. Math. Soc. 347 (1995), 12691294. MR 95k:49035
 [14]
 L. Thibault and D. Zagrodny, Integration of subdifferentials of lower semicontinuous functions, J. Math. Anal. Appl. 189 (1995), 3358. MR 95i:49032
 [15]
 R. Correa, A. Jofré and L. Thibault, Characterization of lower semicontinuous convex functions, Proc. Amer. Math. Soc. 116 (1992), 6172. MR 92k:49027
 [16]
 E. Asplund, Cebysev sets in Hilbert spaces, Trans. Amer. Math. Soc. 144 (1969), 235240. MR 40:6238
 [17]
 J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, WileyInterscience, 1984. MR 87a:58002
 [18]
 K.S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), 791795. MR 58:23286
 [19]
 J. M. Borwein and H. M. Strojwas, Proximal analysis and boundaries of closed sets in Banach spaces II: Applications, Canad. J. Math. 39 (1987), 428472. MR 88f:46034
 [20]
 F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM Publications, Philadelphia, 1990 (originally published in 1983). MR 85m:49002; MR 91e:49001
 [21]
 E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 121 (1968), 3147. MR 39:1968
 [22]
 T. S. Motzkin, Sur quelques propriétés caractéristiques des ensembles convexes, Att. R. Acad. Lincei, Rend. 21 (1935), 562567.
 [23]
 V. Klee, Convexity of Chebyshev sets, Math. Annalen 142 (1961), 292304. MR 22:12367
 [24]
 J.B. HiriartUrruty, Ensembles de Tchebychev vs. ensembles convexes: l'état de la situation vu par l'analyse convexe non lisse, Ann. Sci. Math. Que. 22 (1998), 4762. MR 99f:49018
 [25]
 R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, Vol. 1364 2nd edition, SpringerVerlag, 1993. MR 94f:46055
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
49J52,
58C06,
58C20,
90C30
Retrieve articles in all journals
with MSC (1991):
49J52,
58C06,
58C20,
90C30
Additional Information
R. A. Poliquin
Affiliation:
Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email:
rene.poliquin@ualberta.ca
R. T. Rockafellar
Affiliation:
Department of Mathematics 354350, University of Washington, Seattle, Washington 981954350
Email:
rtr@math.washington.edu
L. Thibault
Affiliation:
Laboratoire d’Analyse Convexe, Université Montpellier II, 34095 Montpellier, France
Email:
thibault@math.univmontp2.fr
DOI:
http://dx.doi.org/10.1090/S0002994700025502
PII:
S 00029947(00)025502
Keywords:
Variational analysis,
distance functions,
singlevalued projections,
proximal normals,
proxregularity,
proximal smoothness,
primallowernice functions,
hypomonotone mappings,
monotone mappings
Received by editor(s):
June 17, 1997
Received by editor(s) in revised form:
June 10, 1998
Published electronically:
June 9, 2000
Additional Notes:
This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP41983 for the first author, by the National Science Foundation under grant DMS–9500957 for the second author, and by NATO under grant CRG 960360 for the third author. The authors are grateful for useful discussions with C. Combari, and for helpful comments made by the referee.
Article copyright:
© Copyright 2000
American Mathematical Society
