Path stability and nonlinear weak ergodic theorems

Author:
Yong-Zhuo Chen

Journal:
Trans. Amer. Math. Soc. **352** (2000), 5279-5292

MSC (2000):
Primary 47H07, 47H09; Secondary 47H10

DOI:
https://doi.org/10.1090/S0002-9947-00-02600-3

Published electronically:
July 12, 2000

MathSciNet review:
1707493

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a sequence of nonlinear operators. We discuss the asymptotic properties of their inhomogeneous iterates in metric spaces, then apply the results to the ordered Banach spaces through projective metrics. Theorems on path stability and nonlinear weak ergodicity are obtained in this paper.

**1.**D. W. Boyd and J. S. W. Wong,*On nonlinear contractions*, Proc. Amer. Math. Soc. 20(1969), 458-464. MR**39:916****2.**T. A. Burton,*Integral equations, implicit functions and fixed points*, Proc. Amer. Math. Soc. 124(1996), 2383-2390. MR**96j:45001****3.**Y.-Z. Chen,*Thompson's metric and mixed monotone operators*, J. Math. Anal. Appl. 117(1993), 31-37. MR**94d:47055****4.**Y.-Z. Chen,*Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorems*, Nonlinear Analysis 39(2000), 1-10. CMP**2000:03****5.**D. Guo and V. Lakshimikantham,*Nonlinear Problems in Abstract Cones*, Academic Press, New York, 1988. MR**89k:47084****6.**T. Fujimoto and U. Krause,*Asymptotic properties for inhomogeneous iterations of nonlinear operators*, SIAM J. Math. Anal. 19(1988), 841-853. MR**90b:47119****7.**T. Fujimoto and U. Krause,*Stable inhomogeneous iterations of nonlinear positive operators on Banach spaces*, SIAM J. Math. Anal. 25(1994), 1195-1202. MR**95m:47104****8.**H. Inaba,*Weak ergodicity of population evolution processes*, Math. Biosc. 96(1989), 195-219. MR**91b:92028****9.**J. R. Jachymski,*An extension of A. Ostrowski's Theorem on the round-off stability of iterations*, Aequ. Math. 53(1997), 242-253. MR**98d:47122****10.**J. P. Keener,*The Perron-Frobenius Theorem and the ranking of football teams*, SIAM Review 35(1993), 80-93. MR**94a:15012****11.**M. A. Krasnosel'skii and P. P. Zabreiko,*Geometrical Methods of Nonlinear Analysis*, Springer-Verlag, Berlin, 1984. MR**85b:47057****12.**U. Krause,*Path stability of prices in a nonlinear Leontief model*, Ann. Oper. Res. 37(1992), 141-148. CMP**93:01****13.**U. Krause,*Positive nonlinear systems: some results and applications*, Proceedings of the First World Congress of Nonlinear Analysts 1992, W. de Gruyter, Berlin, 1996. CMP**96:12****14.**R. D. Nussbaum,*Iterated nonlinear maps and Hilbert's projective metric*, Mem. Amer. Math. Soc. Vol.75, No.391 (Sept. 1988). MR**89m:47046****15.**R. D. Nussbaum,*Some nonlinear weak ergodic theorems*, SIAM. J. Math. Anal. 21(1990), pp. 436-460. MR**90m:47081****16.**E. Seneta,*Non-negative Matrices and Markov Chains*, 2nd ed., Springer-Verlag, Berlin, 1980; 1st ed.,*Non-negative Matrice*, G. Allen and Unwin, London, 1973. MR**85i:60058****17.**A. C. Thompson,*On certain contraction mappings in a partially ordered vector space*, Proc. Amer. Math. Soc., 14(1963), 438-443. MR**26:6727**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
47H07,
47H09,
47H10

Retrieve articles in all journals with MSC (2000): 47H07, 47H09, 47H10

Additional Information

**Yong-Zhuo Chen**

Affiliation:
Division of Natural Sciences, University of Pittsburgh at Bradford, Bradford, Pennsylvania 16701

Email:
yong@imap.pitt.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02600-3

Keywords:
Hilbert metric,
inhomogeneous iterates,
metric space,
monotone operator,
ordered Banach space,
Thompson's metric

Received by editor(s):
June 30, 1998

Received by editor(s) in revised form:
June 1, 1999

Published electronically:
July 12, 2000

Article copyright:
© Copyright 2000
American Mathematical Society