Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Germs of holomorphic vector fields in $\mathbb{C}^m$ without a separatrix


Authors: I. Luengo and J. Olivares
Journal: Trans. Amer. Math. Soc. 352 (2000), 5511-5524
MSC (2000): Primary 32S65
Published electronically: August 8, 2000
MathSciNet review: 1781274
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove the existence of families of germs of holomorphic vector fields in $\mathbb{C}^m$ without a separatrix, in every complex dimension $m$ bigger than or equal to 4.


References [Enhancements On Off] (What's this?)

  • 1. César Camacho and Paulo Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. (2) 115 (1982), no. 3, 579–595. MR 657239, 10.2307/2007013
  • 2. Shiing Shen Chern, Meromorphic vector fields and characteristic numbers, Scripta Math. 29 (1973), no. 3-4, 243–251. Collection of articles dedicated to the memory of Abraham Adrian Albert. MR 0412486
  • 3. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
    Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994. Reprint of the 1978 original. MR 1288523
  • 4. Xavier Gómez-Mont and George Kempf, Stability of meromorphic vector fields in projective spaces, Comment. Math. Helv. 64 (1989), no. 3, 462–473. MR 998859, 10.1007/BF02564687
  • 5. Xavier Gómez-Mont and Ignacio Luengo, Germs of holomorphic vector fields in 𝐂³ without a separatrix, Invent. Math. 109 (1992), no. 2, 211–219. MR 1172688, 10.1007/BF01232024
  • 6. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • 7. J. Olivares-Vázquez, On vector fields in 𝐶³ without a separatrix, Rev. Mat. Univ. Complut. Madrid 5 (1992), no. 1, 13–34. MR 1183423
  • 8. J. Olivares, On the problem of existence of germs of holomorphic vector fields in $ {\mathbb{C}}^m $, without a separatrix, $(m \geq 3)$. Ecuaciones Diferenciales, Singularidades (J. Mozo Fernández ed.), Secretariado de publicaciones e intercambio científico, Universidad de Valladolid, Serie Ciencias 15, 1997, pp. 317-351.
  • 9. Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32S65

Retrieve articles in all journals with MSC (2000): 32S65


Additional Information

I. Luengo
Affiliation: Facultad de Ciencias Matemáticas, Universidad Complutense, Madrid, E-28040, España
Email: iluengo@eucmos.sim.ucm.es

J. Olivares
Affiliation: Centro de Investigación en Matemáticas, A.P. 402, Guanajuato, 36000, México
Email: olivares@fractal.cimat.mx

DOI: https://doi.org/10.1090/S0002-9947-00-02677-5
Received by editor(s): December 5, 1997
Published electronically: August 8, 2000
Additional Notes: Supported by DGICYT (Spain) PB97-0284-C02-01
Partially supported by CONACYT (Mexico) Projects 3398-E9307, 0324P-E9506 and Postdoctoral Grant 963052, at Dto. Álgebra, Geometría y Topología, U. Valladolid
Article copyright: © Copyright 2000 American Mathematical Society