IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Blow up and instability of solitary-wave solutions to a generalized Kadomtsev-Petviashvili equation


Author: Yue Liu
Journal: Trans. Amer. Math. Soc. 353 (2001), 191-208
MSC (2000): Primary 35Q53, 35B60, 76B25
DOI: https://doi.org/10.1090/S0002-9947-00-02465-X
Published electronically: June 8, 2000
MathSciNet review: 1653363
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we consider a generalized Kadomtsev-Petviashvili equation in the form \begin{equation*}( u_{t} + u_{xxx} + u^{p} u_{x} )_{x} = u_{yy} \quad (x, y) \in R^{2}, t \ge 0. \end{equation*} It is shown that the solutions blow up in finite time for the supercritical power of nonlinearity $ p \ge 4/3 $ with $ p $ the ratio of an even to an odd integer. Moreover, it is shown that the solitary waves are strongly unstable if $ 2 < p < 4$; that is, the solutions blow up in finite time provided they start near an unstable solitary wave.


References [Enhancements On Off] (What's this?)

  • [AlPeSa] Alexander, J.C., Pego, R. L., and Sachs, R. L., On the transverse instability of solitary eaves in the Kadomtsev-Petviashvili equation, Phys. Lett. A 226 (1997), 187-192. MR 97j:35132
  • [AbSe] Ablowitz, M., and Segur, H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981. MR 84a:35251
  • [BeBoMa] Benjamin, T., Bona, J., and Mahony, J., Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London A272 (1972), 47-78. MR 55:898
  • [BeIlNi] Besov, O. V., Il$'$in, V. P., and Nikolski{\u{\i}}\kern.15em, S. M., Integral Representations of Functions and Imbedding Theorems, Vol. I, J. Wiley, New York, 1978. MR 80f:46030a
  • [Bo] Bona, J., On the stability of solitary waves, Proc. Roy. Soc. London A344 (1975), 363-374. MR 52:7292
  • [BoDoKa] Bona, J., Dougalis, V. A. and Karakashian, O. A., Fully discrete Galerkin methods for the Korteweg-de Vries equation, Comput. Math. Appl. Ser. A 12 (1986), 859-884. MR 87j:65108
  • [Bou] Bourgain, J., On the Cauchy problem for the Kadomtsev-Petviashvili equations, Geom. $ \qquad \qquad $ Funct. Anal. 3(4) (1993), 315-341. MR 94d:35142
  • [BoLiu] Bona, J. and Liu, Yue, Instability of solitary waves of the Kadomtsev-Petviashvili equation in three dimensions, preprint.
  • [BoSoSt] Bona, J., Souganidis, P. and Strauss, W., Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987), 395-412. MR 88m:35128
  • [BoSa1] de Bouard A. and Saut, J.C., Solitary waves of generalized Kadomtsev-Petviashvili equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 14 (1997), 211-236. MR 98a:35115
  • [BoSa2] de Bouard A. and Saut, J. C., Symmetries and decay of the generalized Kadomtsev-Petviashvili solitary waves, SIAM J. Math. Anal. 28 (1997), 1064-1085. MR 99c:35208
  • [BoSa3] de Bouard A. and Saut, J. C., Remarks on the stability of generalized KP solitary waves, Contemp. Math., 200, Amer. Math. Soc., Providence, R.I., 1996, 75-84. MR 97a:35157
  • [BrLi1] Brezis, H., and Lieb, E., A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. MR 84e:28003
  • [BrLi2] Brezis, H., and Lieb, E., Minimum action solutions of some vector field equations, Comm. Math. Phys. 96 (1984), 97-113. MR 86d:35045
  • [FoSu] Fokas, A. S. and Sung, L. Y., On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations, Inverse Problems 8 (1992), 673-708. MR 93h:35177
  • [IsMeSt] Isaza, P., Mejía, J., and Stallbohm, V., Local solution for the Kadomtsev-Petviashvili equation in $ R^{2},$ J. Math. Anal. Appl. 196 (1995), 566-587. MR 96j:35217
  • [KaPe] Kadomtsev, B. B. and Petviashvili, V. I., On the stability of solitary waves in weakly dispersive media, Soviet Phys. Dokl. 15(6) (1970), 539-541.
  • [KePoVe] Kenig, C. E., Ponce, G. and Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46 (1993), 527-620. MR 94h:35229
  • [LiuWa] Liu, Yue and Wang, Xiao-Ping, Nonlinear stability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Comm. Math. Phys. 183 (1997), 253-266. MR 99b:35184
  • [Liu] Liu, Yue, Blow up and instability of solitary waves to a generalized Kadomtsev-Petviashvili equation in three dimensions, in preparation.
  • [PeYa] Petviashvili, V. and Yan'kov, V., Solitons and turbulence, in B. B. Kadomtsev (ed.) Rev. Plasma Phys. XIV, (1989), 1-62.
  • [Sa1] Saut, J., Remarks on the generalized Kadomtsev-Petviashvili equations, Indiana Math. J. 42(3) (1993), 1011-1026. MR 95j:35200
  • [Sa2] Saut, J., Recent results on the generalized Kadomtsev-Petviashvili equations, Acta Appl. Math. 39 (1995), 477-487. MR 96a:35178
  • [SoSt] Souganidis, P. and Strauss, W., Instability of nonlinear of a class of dispersive solitary waves, Proc. Roy. Soc. Edinburgh, 114A, (1990) 195-212. MR 92a:35143
  • [To] Tom, M. M., On the Generalized Kadomtsev-Petviashvili equation, Contemp. Math., Amer. Math. Soc., 1996, 193-210. MR 97e:35165
  • [TuFa] Turitsyn, S. and Falkovitch, G., Stability of magneto elastic solitons and self-focusing of sound in antiferromagnet, Soviet Phys. JETP 62 (1985), 146-152.
  • [Uk] Ukai, S., Local solutions of the Kadomtsev-Petviashvili equation, J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 36 (1989), 193-209. MR 90i:35270
  • [WaAbSe] Wang, X-P., Ablowitz, M., and Segur, H., Wave collapse and instability of solitary waves of a generalized Kadomtsev-Petviashvili equation, Physica D 78 (1994), 241-265. MR 95g:35182
  • [We] Weinstein, M., On the solitary traveling wave of the generalized Korteweg-de Vries equation, Amer. Math. Soc., Lectures in Appl. Math. 23 (1986). MR 88a:35218
  • [Wi] Wickerhauser, M. V., Inverse scattering for the heat operators and evolutions in $2 + 1$ variables, Comm. Math. Phys. 108 (1987), 67-89. MR 87m:35224
  • [Za] Zakharov, V., On the stochastization of one dimensional chains of nonlinear oscillators, Sov. Phys. JETP 38 (1974), 108-110.
  • [Zh] Zhou, X., Inverse scattering transform for the time dependent Schödinger equation with applications to the KPI equation, Comm. Math. Phys. 128 (1990), 551-564. MR 91j:34138

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35Q53, 35B60, 76B25

Retrieve articles in all journals with MSC (2000): 35Q53, 35B60, 76B25


Additional Information

Yue Liu
Affiliation: Department of Mathematics, The University of Texas at Arlington, Arlington, Texas 76019
Email: liu@math.uta.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02465-X
Received by editor(s): April 6, 1998
Received by editor(s) in revised form: September 2, 1998
Published electronically: June 8, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society