Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Extension theory of separable metrizable spaces with applications to dimension theory

Authors: Alexander Dranishnikov and Jerzy Dydak
Journal: Trans. Amer. Math. Soc. 353 (2001), 133-156
MSC (1991): Primary 55M10, 54F45
Published electronically: August 3, 2000
MathSciNet review: 1694287
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper deals with generalizing several theorems of the covering dimension theory to the extension theory of separable metrizable spaces. Here are some of the main results:

Generalized Eilenberg-Borsuk Theorem. Let $L$ be a countable CW complex. If $X$ is a separable metrizable space and $K\ast L$ is an absolute extensor of $X$ for some CW complex $K$, then for any map $f:A\to K$, $A$ closed in $X$, there is an extension $f':U\to K$ of $f$ over an open set $U$such that $L\in AE(X-U)$.

Theorem. Let $K,L$ be countable CW complexes. If $X$ is a separable metrizable space and $K\ast L$ is an absolute extensor of $X$, then there is a subset $Y$ of $X$ such that $K\in AE(Y)$ and $L\in AE(X-Y)$.

Theorem. Suppose $G_{i},\ldots ,G_{n}$ are countable, non-trivial, abelian groups and $k>0$. For any separable metrizable space $X$ of finite dimension $\dim X>0$, there is a closed subset $Y$ of $X$ with $\dim _{G_{i}} Y=\max (\dim _{G_{i}} X-k,1)$ for $i=1,\ldots ,n$.

Theorem. Suppose $W$ is a separable metrizable space of finite dimension and $Y$ is a compactum of finite dimension. Then, for any $k$, $0<k<\dim W-\dim Y$, there is a closed subset $T$ of $W$such that $\dim T=\dim W-k$ and $\dim (T\times Y)=\dim (W\times Y)-k$.

Theorem. Suppose $X$ is a metrizable space of finite dimension and $Y$ is a compactum of finite dimension. If $K\in AE(X)$ and $L\in AE(Y)$ are connected CW complexes, then $K\wedge L\in AE(X\times Y).$

References [Enhancements On Off] (What's this?)

  • [A] P.S.Alexandroff, Dimensionstheorie, Ein Beitrag zur Geometrie der abgeschlossenen Mengen, Math. Ann. 106 (1932), 161-238.
  • [Bor] K.Borsuk, Un theoreme sur la prolongements des transformations, Fund. Math. 29 (1937), 161-166.
  • [Ca] R. Cauty, Sur les sous-espaces des complexes simpliciaux, Bull. Soc. Math. France 100 (1972), 129-155. MR 48:5023
  • [Co] H. Cohen, A cohomological definition of dimension for locally compact Hausdorff spaces, Duke Math. J. 21 (1954), 209-224. MR 16:609b
  • [D-M] J.Dydak and J.Mogilski, Universal cell-like maps, Proceedings of AMS 122 (1994), 943-948. MR 95a:55003
  • [Dra$_{1}$] A.N.Dranishnikov, Homological dimension theory, Russian Math. Surveys 43(4) (1988), 11-63. MR 90e:55003
  • [Dra$_{2}$] A.N.Dranishnikov, On the mapping intersection problem, Pacific Journal of Mathematics 173 No.2 (1996), 403-412. MR 97e:54030
  • [Dra$_{3}$] A.N.Dranishnikov, Extension of maps into CW complexes, Math. USSR Sbornik 74 (1993), 47-56. MR 93a:55002
  • [Dra$_{4}$] A.N.Dranishnikov, Eilenberg-Borsuk theorem for maps into arbitrary complexes, Math. Sbornik 185 (1994), 81-90. MR 95j:54028
  • [Dra$_{5}$] A.N.Dranishnikov, On intersection of compacta in Euclidean space II, Proceedings of AMS 113 (1991), 1149-1154. MR 92c:54015
  • [Dra$_{6}$] A.N.Dranishnikov, Cohomological dimension is not preserved by Stone-Cech compactification, Comptes Rendus Bulgarian Acad. of Sci. 41 (1988), no. 12, 9-10 (Russian). MR 90e:55002
  • [Dra$_{7}$] A.N.Dranishnikov, On the dimensions of the product, the union and the intersection of two spaces, preprint, 1995.
  • [D-R] A.Dranishnikov and D.Repovs, The Urysohn-Menger Sum Formula: An extension of the Dydak-Walsh theorem to dimension one, J.Austral. Math. Soc., Ser.A 59 (1995), 273-282. MR 96g:55003
  • [D-R-S$_{1}$] A.Dranishnikov, D.Repovs and E.Scepin, On the failure of the Urysohn-Menger sum formula for cohomological dimension, Proc.Amer.Math.Soc. 120 (1994), 1267-1270. MR 94f:55001
  • [D-R-S$_{2}$] A.N. Dranishnikov, D. Repovs and E.Scepin, Dimension of products with continua, Topology Proceedings 18 (1993), 57-73. MR 96b:54054
  • [D-S] J.Dydak and J.Segal, Shape theory: An introduction, Lecture Notes in Math. 688, Springer Verlag, 1978, pp. 1-150. MR 80h:54020
  • [D-T] A.Dold and R.Thom, Quasifaserungen und Unendliche Symmetrische Produkte, Annals of Math. 67 (1958), 239-281. MR 20:3542
  • [D-W$_{1}$] J.Dydak and J.J.Walsh, Spaces without cohomological dimension preserving compactifications, Proceedings of the Amer.Math.Soc. 113 (1991), 1155-1162. MR 92c:54039
  • [D-W$_{2}$] J.Dydak and J.J.Walsh, Aspects of cohomological dimension for principal ideal domains, preprint.
  • [Dy$_{1}$] J.Dydak, Cohomological dimension and metrizable spaces, Transactions of the Amer.Math.Soc. 337 (1993), 219-234. MR 93g:55001
  • [Dy$_{2}$] J.Dydak, Cohomological dimension and metrizable spaces II, Trans.Amer.Math.Soc. 348 (1996), 1647-1661. MR 96h:55001
  • [Dy$_{3}$] J.Dydak, Union theorem for cohomological dimension: A simple counterexample, Proceedings of AMS 121 (1994), 295-297. MR 94g:55001
  • [Ei] S.Eilenberg, Un theoreme de la dualite, Fund. Math. 26 (1936), 280-282.
  • [En] R.Engelking, Dimension Theory, Math. Library, North-Holland, 1978. MR 58:2753b
  • [Fu] L.Fuchs, Infinite abelian groups, Academic Press, New York and London, 1970. MR 41:333
  • [Hu] S.T.Hu, Theory of retracts, Wayne State University Press, 1965, pp. 1-234. MR 31:6202
  • [Kob] N.Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-functions, Springer-Verlag, New York, Heidelberg, Berlin, 1977. MR 57:5964
  • [Ko] Y. Kodama, Note on an absolute neighborhood extensor for metric spaces, Journal of the Mathematical Society of Japan 8 (1956), 206-215. MR 18:406c
  • [Ku] V.I. Kuzminov, Homological dimension theory, Russian Math. Surveys 23 (1968), no. 5, 1-45. MR 39:2158
  • [M-S] S.Mardesic and J.Segal, Shape theory, North-Holland Publ.Co., Amsterdam, 1982. MR 84b:55020
  • [Mas] W.Massey, Homology and Cohomology Theory, Marcel Dekker, New York, Basel, 1978. MR 58:7594
  • [Ol$_{1}$] W.Olszewski, Completion theorem for cohomological dimensions, Proceedings of AMS 123 (1995), 2261-2264. MR 95k:54064
  • [Ol$_{2}$] W.Olszewski, Universal separable metrizable spaces for cohomological dimension, Topology and its Appl. 61 (1995), 293-299. MR 95m:54013
  • [Ru] L.R.Rubin, Characterizing cohomological dimension: The cohomological dimension of $A\cup B$, Topology and its Appl. 40 (1991), 233-263. MR 92g:55002
  • [R-S] L.R.Rubin and P.J.Schapiro, Cell-like maps onto non-compact spaces of finite cohomological dimension, Topology and its Appl. 27 (1987), 221-244. MR 89h:55002
  • [Sp] E.Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35:1007
  • [Su] D.Sullivan, Geometric Topology, Part I: Localization, Periodicity, and Galois Symmetry, M.I.T. Press, 1970. MR 58:13006a
  • [Wa] J.J.Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Notes in Math. 870, 1981, pp. 105-118. MR 83a:57021
  • [We] J.West, Open problems in infinite dimensional topology, in Open Problems in Topology, North-Holland, 1990, pp. 523-597. MR 92c:54001
  • [Wh] G.W.Whitehead, Elements of homotopy theory, Springer-Verlag, 1978. MR 80b:55001
  • [Z] M.Zarichnyi, Universal spaces for cohomological dimension (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55M10, 54F45

Retrieve articles in all journals with MSC (1991): 55M10, 54F45

Additional Information

Alexander Dranishnikov
Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611

Jerzy Dydak
Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996

Keywords: Dimension, cohomological dimension, ANR's, absolute extensors
Received by editor(s): July 14, 1995
Received by editor(s) in revised form: February 5, 1999
Published electronically: August 3, 2000
Additional Notes: The first and second authors were supported in part by grants DMS-9696238 and DMS-9704372, respectively, from the National Science Foundation.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society