Analysis and geometry on manifolds with integral Ricci curvature bounds. II

Authors:
Peter Petersen and Guofang Wei

Journal:
Trans. Amer. Math. Soc. **353** (2001), 457-478

MSC (2000):
Primary 53C20

Published electronically:
September 21, 2000

MathSciNet review:
1709777

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We extend several geometrical results for manifolds with lower Ricci curvature bounds to situations where one has integral lower bounds. In particular we generalize Colding's volume convergence results and extend the Cheeger-Colding splitting theorem.

**1.**Uwe Abresch and Detlef Gromoll,*On complete manifolds with nonnegative Ricci curvature*, J. Amer. Math. Soc.**3**(1990), no. 2, 355–374. MR**1030656**, 10.1090/S0894-0347-1990-1030656-6**2.**M. T. Anderson,*Scalar curvature, metric degeneration and the static vacuum Einstein equations on 3-manifolds, I*. preprint from SUNY Stony Brook.**3.**S. Y. Cheng and S. T. Yau,*Differential equations on Riemannian manifolds and their geometric applications*, Comm. Pure Appl. Math.**28**(1975), no. 3, 333–354. MR**0385749****4.**Jeff Cheeger and Tobias H. Colding,*Lower bounds on Ricci curvature and the almost rigidity of warped products*, Ann. of Math. (2)**144**(1996), no. 1, 189–237. MR**1405949**, 10.2307/2118589**5.**Jeff Cheeger and Tobias H. Colding,*On the structure of spaces with Ricci curvature bounded below. I*, J. Differential Geom.**46**(1997), no. 3, 406–480. MR**1484888****6.**Tobias H. Colding,*Large manifolds with positive Ricci curvature*, Invent. Math.**124**(1996), no. 1-3, 193–214. MR**1369415**, 10.1007/s002220050050**7.**Tobias H. Colding,*Shape of manifolds with positive Ricci curvature*, Invent. Math.**124**(1996), no. 1-3, 175–191. MR**1369414**, 10.1007/s002220050049**8.**Tobias H. Colding,*Ricci curvature and volume convergence*, Ann. of Math. (2)**145**(1997), no. 3, 477–501. MR**1454700**, 10.2307/2951841**9.**Michel Le Couturier and Gilles F. Robert,*𝐿^{𝑝}-pinching and the geometry of compact Riemannian manifolds*, Comment. Math. Helv.**69**(1994), no. 2, 249–271. MR**1282370**, 10.1007/BF02564485**10.**Sylvestre Gallot,*Isoperimetric inequalities based on integral norms of Ricci curvature*, Astérisque**157-158**(1988), 191–216. Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR**976219****11.**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****12.**G. Perelman,*Manifolds of positive Ricci curvature with almost maximal volume*, J. Amer. Math. Soc.**7**(1994), no. 2, 299–305. MR**1231690**, 10.1090/S0894-0347-1994-1231690-7**13.**P. Petersen,*On eigenvalue pinching in positive Ricci curvature*, Invt. Math. (1999) DOI 10.1007/s002229900931.**14.**P. Petersen and C. Sprouse,*Integral curvature bounds, distance estimates and applications*, J. Diff. Geo. 50 (1998) 269-298. CMP**99:11****15.**P. Petersen and G. Wei,*Relative volume comparison with integral curvature bounds*, Geom. Funct. Anal.**7**(1997), no. 6, 1031–1045. MR**1487753**, 10.1007/s000390050036**16.**Deane Yang,*Convergence of Riemannian manifolds with integral bounds on curvature. I*, Ann. Sci. École Norm. Sup. (4)**25**(1992), no. 1, 77–105. MR**1152614****17.**Deane Yang,*Convergence of Riemannian manifolds with integral bounds on curvature. II*, Ann. Sci. École Norm. Sup. (4)**25**(1992), no. 2, 179–199. MR**1169351****18.**Deane Yang,*Riemannian manifolds with small integral norm of curvature*, Duke Math. J.**65**(1992), no. 3, 501–510. MR**1154180**, 10.1215/S0012-7094-92-06519-7

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C20

Retrieve articles in all journals with MSC (2000): 53C20

Additional Information

**Peter Petersen**

Affiliation:
Department of Mathematics, University of California, Los Angeles, California 90095

Email:
petersen@math.ucla.edu

**Guofang Wei**

Affiliation:
Department of Mathematics, University of California, Santa Barbara, California 93106

Email:
wei@math.ucsb.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02621-0

Keywords:
Integral curvature bounds,
maximum principle,
gradient estimate,
excess estimate,
volume and Gromov-Hausdorff convergence.

Received by editor(s):
November 30, 1998

Received by editor(s) in revised form:
July 30, 1999

Published electronically:
September 21, 2000

Additional Notes:
Both authors were supported by the NSF

Article copyright:
© Copyright 2000
American Mathematical Society