On the asymptotic geometry of nonpositively curved graphmanifolds

Authors:
S. Buyalo and V. Schroeder

Journal:
Trans. Amer. Math. Soc. **353** (2001), 853-875

MSC (2000):
Primary 53C20

DOI:
https://doi.org/10.1090/S0002-9947-00-02583-6

Published electronically:
November 8, 2000

MathSciNet review:
1707192

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study the Tits geometry of a 3-dimensional graphmanifold of nonpositive curvature. In particular we give an optimal upper bound for the length of nonstandard components of the Tits metric. In the special case of a -metric we determine the whole length spectrum of the nonstandard components.

**[B]**W. Ballmann,*Lectures on spaces of nonpositive curvature*, DMV Seminar, Band 25, Basel, Birkhäuser, 1995. MR**97a:53053****[BB]**W. Ballmann and M. Brin,*Orbihedra of nonpositive curvature*, Publ. Math. IHES 82 (1995), 169-209. MR**97i:53049****[BBE]**W. Ballmann, M. Brin, and P. Eberlein,*Structure of manifolds of nonpositive curvature.I*, Ann. of Math. 122 (1985), 171-203. MR**87c:58092a****[BGS]**W. Ballmann, M. Gromov, and V. Schroeder,*Manifolds of nonpositive curvature*, Progress in Math. 61, Birkhäuser, Boston-Basel-Stuttgart, 1985. MR**87h:53050****[Bu]**S. Buyalo,*Geodesics in Hadamard spaces*, Algebra i Analiz 10 (1998), 93-123. MR**99c:53034****[BK1]**S. Buyalo and V. Kobel'skii,*Geometrization of graph-manifolds I. Conformal geometrization*, St. Petersburg Math. J. 7 (1996), 185-216. MR**97k:57016****[BK2]**S. Buyalo and V. Kobel'skii,*Geometrization of graph-manifolds. II Isometric geometrization*, St. Petersburg Math. J. 7 (1996), 387-404. MR**97k:57017****[CK]**C. Croke and B. Kleiner,*The geodesic flow of nonpositively curved graphmanifolds*, to appear.**[E]**P. Eberlein,*Geometry of Nonpositively Curved Manifolds*, The University of Chicago Press, Chicago, 1996. MR**98h:53002****[HS]**C. Hummel and V. Schroeder,*Tits geometry associated with**-dimensional closed real-analytic manifolds of nonpositive curvature*, J. Diff. Geom. 48 (1998), 531-555. MR**99j:53058****[Ka]**M. Kapovich,*Flat conformal structures on 3-dimensional manifolds: the existence problem.I*, Siberian Math. J. 30 (1990), 712-722. MR**91b:57017****[Kl]**B. Kleiner,*The local structure of length spaces with curvature bounded above*, Math. Z. 231 (1999), 409-456. CMP**99:16****[Le]**B. Leeb,*3-manifolds with(out) metrics of nonpositive curvature*, Invent. Math. 122 (1995), 277-289. MR**97g:57015**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C20

Retrieve articles in all journals with MSC (2000): 53C20

Additional Information

**S. Buyalo**

Affiliation:
St. Petersburg Branch, Steklov Mathematical Institute, Fontanka 27, 191011 St. Petersburg, Russia

Email:
buyalo@pdmi.ras.ru

**V. Schroeder**

Affiliation:
Institut für Mathematik, Universität Zürich, Winterthurer Str. 190, CH-8057 Zürich, Switzerland

Email:
vschroed@math.unizh.ch

DOI:
https://doi.org/10.1090/S0002-9947-00-02583-6

Received by editor(s):
July 28, 1997

Received by editor(s) in revised form:
May 5, 1999

Published electronically:
November 8, 2000

Additional Notes:
The first author was supported by RFFI Grant 96-01-00674 and CRDF Grant RM1-169

The second author was supported by the Swiss National Science Foundation

Article copyright:
© Copyright 2000
American Mathematical Society