Properties of Anick's spaces
Author:
Stephen D. Theriault
Journal:
Trans. Amer. Math. Soc. 353 (2001), 10091037
MSC (2000):
Primary 55P45; Secondary 55Q15
Published electronically:
August 8, 2000
MathSciNet review:
1709780
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove three useful properties of Anick's space . First, at odd primes a map from into a homotopy commutative, homotopy associative space can be extended to a unique map from into . Second, at primes larger than , is itself homotopy commutative and homotopy associative. And third, the first two properties combine to show that the order of the identity map on is .
 [A]
David
Anick, Differential algebras in topology, Research Notes in
Mathematics, vol. 3, A K Peters, Ltd., Wellesley, MA, 1993. MR 1213682
(94h:55020)
 [AG]
David
Anick and Brayton
Gray, Small 𝐻 spaces related to Moore spaces, Topology
34 (1995), no. 4, 859–881. MR 1362790
(97a:55011), http://dx.doi.org/10.1016/00409383(95)000011
 [CMN1]
F.
R. Cohen, J.
C. Moore, and J.
A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. (2)
109 (1979), no. 1, 121–168. MR 519355
(80e:55024), http://dx.doi.org/10.2307/1971269
 [CMN2]
F.
R. Cohen, J.
C. Moore, and J.
A. Neisendorfer, The double suspension and exponents of the
homotopy groups of spheres, Ann. of Math. (2) 110
(1979), no. 3, 549–565. MR 554384
(81c:55021), http://dx.doi.org/10.2307/1971238
 [CMN3]
F.
R. Cohen, J.
C. Moore, and J.
A. Neisendorfer, Exponents in homotopy theory, Algebraic
topology and algebraic 𝐾theory (Princeton, N.J., 1983), Ann. of
Math. Stud., vol. 113, Princeton Univ. Press, Princeton, NJ, 1987,
pp. 3–34. MR 921471
(89d:55035)
 [Ga]
Tudor
Ganea, Cogroups and suspensions, Invent. Math.
9 (1969/1970), 185–197. MR 0267582
(42 #2484)
 [Gr1]
Brayton
Gray, Homotopy commutativity and the 𝐸𝐻𝑃
sequence, Algebraic topology (Evanston, IL, 1988) Contemp. Math.,
vol. 96, Amer. Math. Soc., Providence, RI, 1989,
pp. 181–188. MR 1022680
(90i:55025), http://dx.doi.org/10.1090/conm/096/1022680
 [Gr2]
B. Gray, EHP spectra and periodicity. I: Geometric constructions, Trans. Amer. Math. Soc. 340 No. 2 (1993), 595616. MR 94c:55035
 [J]
I.
M. James, Reduced product spaces, Ann. of Math. (2)
62 (1955), 170–197. MR 0073181
(17,396b)
 [L]
Arunas
Liulevicius, The factorization of cyclic reduced powers by
secondary cohomology operations, Mem. Amer. Math. Soc. No.
42 (1962), 112. MR 0182001
(31 #6226)
 [N1]
Joseph
Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc.
25 (1980), no. 232, iv+67. MR 567801
(81b:55035), http://dx.doi.org/10.1090/memo/0232
 [N2]
Joseph
Neisendorfer, Properties of certain 𝐻spaces, Quart.
J. Math. Oxford Ser. (2) 34 (1983), no. 134,
201–209. MR
698206 (84h:55007), http://dx.doi.org/10.1093/qmath/34.2.201
 [N3]
J.A. Neisendorfer, JamesHopf invariants, Anick's spaces, and the double loops on odd primary Moore spaces, preprint.
 [N4]
J.A. Neisendorfer, Product decompositions of the double loops on odd primary Moore spaces, Topology 38 (1999), 12931311. CMP 99:12
 [Se]
Paul
Selick, Odd primary torsion in
𝜋_{𝑘}(𝑆³), Topology 17
(1978), no. 4, 407–412. MR 516219
(80c:55010), http://dx.doi.org/10.1016/00409383(78)900071
 [St]
James
Stasheff, 𝐻spaces from a homotopy point of view,
Lecture Notes in Mathematics, Vol. 161, SpringerVerlag, BerlinNew York,
1970. MR
0270372 (42 #5261)
 [Th]
S.D. Theriault, A reconstruction of Anick's fibration, to appear in Topology.
 [To1]
Hirosi
Toda, 𝑝primary components of homotopy groups. II. Mod
𝑝 Hopf invariant, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math.
31 (1958), 143–160. MR 0105683
(21 #4420b)
 [To2]
Hirosi
Toda, Composition methods in homotopy groups of spheres,
Annals of Mathematics Studies, No. 49, Princeton University Press,
Princeton, N.J., 1962. MR 0143217
(26 #777)
 [W]
George
W. Whitehead, Elements of homotopy theory, Graduate Texts in
Mathematics, vol. 61, SpringerVerlag, New YorkBerlin, 1978. MR 516508
(80b:55001)
 [A]
 D. Anick, Differential Algebras in Topology, AK Peters, (1993). MR 94h:55020
 [AG]
 D. Anick and B. Gray, Small Spaces Related to Moore Spaces, Topology 34 (1995), 859881. MR 97a:55011
 [CMN1]
 F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, Torsion in Homotopy Groups, Annals of Math. 109 (1979),121168. MR 80e:55024
 [CMN2]
 F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Annals of Math. 110 (1979), 549565. MR 81c:55021
 [CMN3]
 F.R. Cohen, J.C. Moore, and J.A. Neisendorfer, Exponents in homotopy theory, Algebraic Topology and Algebraic Ktheory, W. Browder, ed., Annals of Math. Study 113, Princeton University Press (1987), 334. MR 89d:55035
 [Ga]
 T. Ganea, Cogroups and suspensions, Invent. Math. 9 (1970), 185197. MR 42:2484
 [Gr1]
 B. Gray, Homotopy commutativity and the EHP sequence, Proc. Internat. Conf.,1988, Contemp. Math., Vol. 96, Amer. Math. Soc., Providence, RI (1989), 181188. MR 90i:55025
 [Gr2]
 B. Gray, EHP spectra and periodicity. I: Geometric constructions, Trans. Amer. Math. Soc. 340 No. 2 (1993), 595616. MR 94c:55035
 [J]
 I.M. James, Reduced Product Spaces, Annals of Math. 62 (1955), 170197. MR 17:396b
 [L]
 A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations. Memoirs of the Amer. Math. Soc. No. 42 (1962). MR 31:6226
 [N1]
 J.A. Neisendorfer, Primary Homotopy Theory, Memoirs of the Amer. Math. Soc. No. 232 (1980). MR 81b:55035
 [N2]
 J.A. Neisendorfer, Properties of Certain spaces, Quart. J. Math. Oxford Ser. (2) 34 (1983), 201209. MR 84h:55007
 [N3]
 J.A. Neisendorfer, JamesHopf invariants, Anick's spaces, and the double loops on odd primary Moore spaces, preprint.
 [N4]
 J.A. Neisendorfer, Product decompositions of the double loops on odd primary Moore spaces, Topology 38 (1999), 12931311. CMP 99:12
 [Se]
 P. Selick, Odd primary torsion in , Topology 17 (1978), 407412. MR 80c:55010
 [St]
 J. Stasheff, spaces from a homotopy point of view, Lecture Notes in Math. 161, SpringerVerlag, (1970). MR 42:5261
 [Th]
 S.D. Theriault, A reconstruction of Anick's fibration, to appear in Topology.
 [To1]
 H. Toda, Primary components of homotopy groups II, mod Hopf invariant, Mem. Coll. Sci. Univ. Kyoto, Ser. A. 31 (1958), 143160. MR 21:4420b
 [To2]
 H. Toda, Composition methods in the homotopy groups of spheres, Annals of Math. Study 49, Princeton University Press (1962). MR 26:777
 [W]
 G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61, SpringerVerlag (1978). MR 80b:55001
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
55P45,
55Q15
Retrieve articles in all journals
with MSC (2000):
55P45,
55Q15
Additional Information
Stephen D. Theriault
Affiliation:
Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607
Address at time of publication:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
Email:
st7b@virginia.edu
DOI:
http://dx.doi.org/10.1090/S0002994700026234
PII:
S 00029947(00)026234
Keywords:
$H$spaces,
universal Whitehead product,
exponent
Received by editor(s):
December 4, 1998
Published electronically:
August 8, 2000
Additional Notes:
The author was supported in part by an NSERC Postdoctoral Fellowship.
Article copyright:
© Copyright 2000
American Mathematical Society
