Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The automorphism groups of Kummer surfaces associated with the product of two elliptic curves

Authors: Jonghae Keum and Shigeyuki Kondo
Journal: Trans. Amer. Math. Soc. 353 (2001), 1469-1487
MSC (2000): Primary 14J28, 14J50, 11H56
Published electronically: September 13, 2000
MathSciNet review: 1806732
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


We calculate the automorphism groups of several Kummer surfaces associated with the product of two elliptic curves. We give their generators explicitly.

References [Enhancements On Off] (What's this?)

  • [1] Richard Borcherds, Automorphism groups of Lorentzian lattices, J. Algebra 111 (1987), no. 1, 133–153. MR 913200, 10.1016/0021-8693(87)90245-6
  • [2] J. H. Conway, Three lectures on exceptional groups, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 215–247. MR 0338152
  • [3] J. H. Conway, The automorphism group of the 26-dimensional even unimodular Lorentzian lattice, J. Algebra 80 (1983), no. 1, 159–163. MR 690711, 10.1016/0021-8693(83)90025-X
  • [4] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988. With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369
  • [5] Jong Hae Keum, Automorphisms of Jacobian Kummer surfaces, Compositio Math. 107 (1997), no. 3, 269–288. MR 1458752, 10.1023/A:1000148907120
  • [6] J. H. Keum, Every algebraic Kummer surface has infinitely many automorphisms, unpublished manuscript (1996).
  • [7] Shigeyuki Kondō, Enriques surfaces with finite automorphism groups, Japan. J. Math. (N.S.) 12 (1986), no. 2, 191–282. MR 914299
  • [8] Shigeyuki Kondō, The automorphism group of a generic Jacobian Kummer surface, J. Algebraic Geom. 7 (1998), no. 3, 589–609. MR 1618132
  • [9] S. Kondo, The maximum order of finite groups of automorphisms of $K3$ surfaces, Amer. J. Mathematics 121 (1999), 1245-1252.
  • [10] Shigeru Mukai and Yukihiko Namikawa, Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. Math. 77 (1984), no. 3, 383–397. MR 759266, 10.1007/BF01388829
  • [11] V. V. Nikulin, Finite groups of automorphisms of Kählerian 𝐾3 surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
  • [12] V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
  • [13] I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type 𝐾3, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 0284440
  • [14] Tetsuji Shioda, On elliptic modular surfaces, J. Math. Soc. Japan 24 (1972), 20–59. MR 0429918
  • [15] T. Shioda and H. Inose, On singular 𝐾3 surfaces, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp. 119–136. MR 0441982
  • [16] J. A. Todd, A representation of the Mathieu group 𝑀₂₄ as a collineation group, Ann. Mat. Pura Appl. (4) 71 (1966), 199–238. MR 0202854
  • [17] È. B. Vinberg, Some arithmetical discrete groups in Lobačevskiĭ spaces, Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973) Oxford Univ. Press, Bombay, 1975, pp. 323–348. MR 0422505

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J28, 14J50, 11H56

Retrieve articles in all journals with MSC (2000): 14J28, 14J50, 11H56

Additional Information

Jonghae Keum
Affiliation: Department of Mathematics, Konkuk University, Seoul 143-701, Korea and Korea Institute for Advanced Study, Seoul 130-012, Korea
Address at time of publication: Korea Institute for Advanced Study, 207-43 Cheongryangri-dong, Dongdaemun-gu, Seoul 130-012, Korea

Shigeyuki Kondo
Affiliation: Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan

Keywords: Automorphisms of Kummer surfaces, Picard lattice, Leech lattice
Received by editor(s): May 30, 1999
Received by editor(s) in revised form: July 12, 1999
Published electronically: September 13, 2000
Additional Notes: The first author was supported by KOSEF(1999-2-102-002-3). The second author was supported in part by the Monbusho Grant-in Aid for Scientific Research (B) 10440005 and Houga 11874004.
Article copyright: © Copyright 2000 American Mathematical Society