Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Noncrossed products over $k_{\mathfrak{p}}(t)$


Author: Eric S. Brussel
Journal: Trans. Amer. Math. Soc. 353 (2001), 2115-2129
MSC (2000): Primary 16K20; Secondary 11R37
DOI: https://doi.org/10.1090/S0002-9947-00-02626-X
Published electronically: November 21, 2000
MathSciNet review: 1813610
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Noncrossed product division algebras are constructed over rational function fields $k(t)$ over number fields $k$ by lifting from arithmetic completions $k(t)_{\mathfrak{p}}$. The existence of noncrossed products over $\mathfrak{p}$-adic rational function fields $k_{\mathfrak{p}}(t)$ is proved as a corollary.


References [Enhancements On Off] (What's this?)

  • 1. Amitsur, S. A.: On central division algebras, Israel J. Math. 12 (1972), 408-422. MR 47:6763
  • 2. Amitsur, S. A.; Saltman, D.: Generic abelian crossed products and $p$-algebras, J. Algebra 51 (1978), no. 1, 76-87. MR 58:10988
  • 3. Arason, J. K.; Fein, B.; Schacher, M.; Sonn, J.: Cyclic extensions of $K(\sqrt {-1})/K$, Trans. Amer. Math. Soc. 313 (1989), no. 2, 843-851. MR 89j:12005
  • 4. Artin, E., Tate, J.: Class Field Theory, Addison-Wesley, Reading, Mass., 1967.
  • 5. Brown, K.: Cohomology of Groups, Springer-Verlag, New York, 1982. MR 83k:20002
  • 6. Brussel, E.: Noncrossed products and nonabelian crossed products over Q(t) and Q((t)), Amer. Jour. Math. 117 (1995), 377-394. MR 96a:16014
  • 7. Cassels, J. W. S.; Fröhlich, A.: Algebraic Number Theory, Academic Press, London-New York, 1986. MR 88h:11073
  • 8. Fein, B.; Saltman, D.; and Schacher, M.: Brauer-Hilbertian fields, Trans. Amer. Math. Soc. 334 (1992), no. 2, 915-928. MR 93b:12006
  • 9. Jacob, B.; Wadsworth, A.R.: Division algebras over henselian fields, J. Algebra 128 (1990), 126-179. MR 91d:12006
  • 10. Jacobson, N.: Finite Dimensional Division Algebras over Fields, Springer-Verlag, New York, New York, 1996. MR 98a:16024
  • 11. Reiner, I.: Maximal Orders, Academic Press, London, 1975. MR 52:13910
  • 12. Saltman, D.: Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250-283. MR 84a:13007
  • 13. Saltman, D.: Division algebras over $p$-adic curves, J. Ramanujan Math. Soc. 12 (1997) no. 1, 25-47. MR 98d:16032
  • 14. Schilling, O. F. G.: The Theory of Valuations, Math. Surveys, No. 4, Amer. Math. Soc., Providence, R.I., 1950. MR 13:315b
  • 15. Serre, J.-P.: Local Fields, Springer-Verlag, New York, New York, 1979. MR 82e:12016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16K20, 11R37

Retrieve articles in all journals with MSC (2000): 16K20, 11R37


Additional Information

Eric S. Brussel
Affiliation: Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322
Email: brussel@mathcs.emory.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02626-X
Received by editor(s): December 8, 1998
Received by editor(s) in revised form: September 13, 1999
Published electronically: November 21, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society