Higher type adjunction inequalities for Donaldson invariants
Author:
Vicente Muñoz
Journal:
Trans. Amer. Math. Soc. 353 (2001), 26352654
MSC (2000):
Primary 57R57; Secondary 57R58
Published electronically:
March 15, 2001
MathSciNet review:
1828464
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We prove new adjunction inequalities for embedded surfaces in fourmanifolds with nonnegative selfintersection number using the Donaldson invariants. These formulas are completely analogous to the ones obtained by Ozsváth and Szabó using the SeibergWitten invariants. To prove these relations, we give a fairly explicit description of the structure of the FukayaFloer homology of a surface times a circle. As an aside, we also relate the Floer homology of a surface times a circle with the cohomology of some symmetric products of the surface.
 1.
A. Bertram and M. Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, math.AG/9803026
 2.
Stamatis
Dostoglou and Dietmar
A. Salamon, Selfdual instantons and holomorphic curves, Ann.
of Math. (2) 139 (1994), no. 3, 581–640. MR 1283871
(95g:58050), http://dx.doi.org/10.2307/2118573
 3.
Ronald
Fintushel and Ronald
J. Stern, The blowup formula for Donaldson invariants, Ann. of
Math. (2) 143 (1996), no. 3, 529–546. MR 1394968
(97i:57036), http://dx.doi.org/10.2307/2118535
 4.
K. Fukaya, Instanton homology for oriented manifolds, Adv. Studies in Pure Mathematics, Ed. Y. Matsumoto and S. Morita.
 5.
P.
B. Kronheimer and T.
S. Mrowka, Embedded surfaces and the structure of Donaldson’s
polynomial invariants, J. Differential Geom. 41
(1995), no. 3, 573–734. MR 1338483
(96e:57019)
 6.
I.
G. Macdonald, Symmetric products of an algebraic curve,
Topology 1 (1962), 319–343. MR 0151460
(27 #1445)
 7.
Vicente
Muñoz, Gluing formulae for Donaldson invariants for
connected sums along surfaces, Asian J. Math. 1
(1997), no. 4, 785–800. MR 1621576
(99m:57027)
 8.
Vicente
Muñoz, Ring structure of the Floer cohomology of
Σ×𝑆¹, Topology 38 (1999),
no. 3, 517–528. MR 1670396
(99m:57028), http://dx.doi.org/10.1016/S00409383(98)000287
 9.
V. Muñoz, FukayaFloer homology of and applications, to appear in J. Diff. Geom.
 10.
V. Muñoz, Basic classes for fourmanifolds not of simple type, Comm. Anal. Geom. 8 2000, 653670. CMP 2000:16
 11.
V. Muñoz and BL. Wang, SeibergWittenFloer homology of a surface times a circle, math.DG/9905050.
 12.
P. Osváth and Z. Szabó, Higher type adjunction inequalities in SeibergWitten theory, math.DG/0005268.
 13.
Edward
Witten, Monopoles and fourmanifolds, Math. Res. Lett.
1 (1994), no. 6, 769–796. MR 1306021
(96d:57035), http://dx.doi.org/10.4310/MRL.1994.v1.n6.a13
 1.
 A. Bertram and M. Thaddeus, On the quantum cohomology of a symmetric product of an algebraic curve, math.AG/9803026
 2.
 S. Dostoglou and D. Salamon, Selfdual instantons and holomorphic curves, Annals of Math., 139 1994, 581640. MR 95g:58050
 3.
 R. Fintushel and R. J. Stern, The blowup formula for Donaldson invariants, Annals of Math. 143 1996, 529546. MR 97i:57036
 4.
 K. Fukaya, Instanton homology for oriented manifolds, Adv. Studies in Pure Mathematics, Ed. Y. Matsumoto and S. Morita.
 5.
 P. B. Kronheimer and T. S. Mrowka, Embedded surfaces and the structure of Donaldson's polynomial invariants, J. Diff. Geom. 41 1995, 573734. MR 96e:57019
 6.
 I. G. MacDonald, Symmetric products of an algebraic curve, Topology, 1 1962, 319343. MR 27:1445
 7.
 V. Muñoz, Gluing formulae for Donaldson invariants for connected sums along surfaces, Asian J. Math. 1 1997, 785800. MR 99m:57027
 8.
 V. Muñoz, Ring structure of the Floer cohomology of , Topology, 38 1999, 517528. MR 99m:57028
 9.
 V. Muñoz, FukayaFloer homology of and applications, to appear in J. Diff. Geom.
 10.
 V. Muñoz, Basic classes for fourmanifolds not of simple type, Comm. Anal. Geom. 8 2000, 653670. CMP 2000:16
 11.
 V. Muñoz and BL. Wang, SeibergWittenFloer homology of a surface times a circle, math.DG/9905050.
 12.
 P. Osváth and Z. Szabó, Higher type adjunction inequalities in SeibergWitten theory, math.DG/0005268.
 13.
 E. Witten, Monopoles and fourmanifolds, Math. Research Letters, 1 1994, 769796. MR 96d:57035
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
57R57,
57R58
Retrieve articles in all journals
with MSC (2000):
57R57,
57R58
Additional Information
Vicente Muñoz
Affiliation:
Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
Address at time of publication:
Departamento de Matemáticas, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Email:
vicente.munoz@uam.es
DOI:
http://dx.doi.org/10.1090/S0002994701027933
PII:
S 00029947(01)027933
Keywords:
4manifolds,
adjunction inequalities,
Donaldson invariants,
FukayaFloer homology
Received by editor(s):
February 23, 1999
Published electronically:
March 15, 2001
Additional Notes:
Partially supported by DGES through Spanish Research Project PB971095
Article copyright:
© Copyright 2001
American Mathematical Society
