Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Generic finiteness for Dziobek configurations


Author: Richard Moeckel
Journal: Trans. Amer. Math. Soc. 353 (2001), 4673-4686
MSC (1991): Primary 70F10, 70F15, 37N05
DOI: https://doi.org/10.1090/S0002-9947-01-02828-8
Published electronically: April 24, 2001
MathSciNet review: 1851188
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The goal of this paper is to show that for almost all choices of $n$ masses, $m_i$, there are only finitely many central configurations of the Newtonian $n$-body problem for which the bodies span a space of dimension $n-2$ (such a central configuration is called a Dziobek configuration). The result applies in particular to two-dimensional configurations of four bodies and three-dimensional configurations of five bodies.


References [Enhancements On Off] (What's this?)

  • 1. A. Albouy, Symétrie des configurations centrales de quatre corps, C. R. Acad. Sci. Paris 320 (1995), 217-220. MR 95k:70023
  • 2. A. Albouy, Recherches sur le problème des $n$ corps, Notes scientifiques et techniques du Bureau des Longitudes, Paris, (1997) 78.
  • 3. O. Dziobek, Über einen merkwürdigen Fall des Vielkörperproblems, Astron. Nach. 152 (1900) 33-46.
  • 4. J. Harris, Algebraic Geometry, A First Course, Springer-Verlag, Berlin, Heidelberg, New York (1992). MR 93j:14001
  • 5. R. P. Kuz'mina, On an upper bound for the number of central configurations in the planar $n$-body problem, Soviet Math. Dokl. 18 (1977) 818-821. (Russian orig., MR 58:13169)
  • 6. J.L. Lagrange, Ouvres, vol 6, 272.
  • 7. P. S. Laplace, Sur quelques points du système du monde, Mémoires de l'Académie Royale des Sciences de Paris (1789) article XXIII ou Oeuvres Complètes, vol 11, 553.
  • 8. R. Lehmann-Filhés, Ueber zwei Fälle des Vielkörpersprblems, Astron. Nach. 127 (1891) 137-143.
  • 9. W. D. MacMillan & W. Bartky, Permanent configurations in the problem of four bodies, Trans. Amer. Math. Soc. 34 (1932) 838-875.
  • 10. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964) 275-280. MR 28:4547
  • 11. R. Moeckel, Relative equilibria of the four body problem, Erg.Th.Dyn.Sys. 5 (1985) 417-435. MR 87b:70011
  • 12. F.R. Moulton, The straight line solutions of the problem of N bodies, in Ann. of Math. 2-12 (1910) 1-17.
  • 13. I. R. Shafarevich, Basic Algebraic Geometry 1, Varieties in Projective Space, Springer-Verlag, Berlin, Heidelberg, New York (1994). MR 95m:14001
  • 14. R. Thom, Sur l'homologie des variétés algébriques réelles, in Differential and Combinatorial Topology, Princeton Univ. Press (1965) 255-265. MR 34:828
  • 15. W. L. Williams, Permanent configurations in the problem of five bodies, Trans. Amer. Math. Soc. 44 (1938) 563-579.
  • 16. A. Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Math. Series 5, Princeton University Press, Princeton, NJ (1941). MR 3:215b

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 70F10, 70F15, 37N05

Retrieve articles in all journals with MSC (1991): 70F10, 70F15, 37N05


Additional Information

Richard Moeckel
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: rick@math.umn.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02828-8
Keywords: Celestial mechanics, central configurations, $n$-body problem
Received by editor(s): December 29, 2000
Published electronically: April 24, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society