Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)


Generic finiteness for Dziobek configurations

Author: Richard Moeckel
Journal: Trans. Amer. Math. Soc. 353 (2001), 4673-4686
MSC (1991): Primary 70F10, 70F15, 37N05
Published electronically: April 24, 2001
MathSciNet review: 1851188
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The goal of this paper is to show that for almost all choices of $n$ masses, $m_i$, there are only finitely many central configurations of the Newtonian $n$-body problem for which the bodies span a space of dimension $n-2$ (such a central configuration is called a Dziobek configuration). The result applies in particular to two-dimensional configurations of four bodies and three-dimensional configurations of five bodies.

References [Enhancements On Off] (What's this?)

  • 1. Alain Albouy, Symétrie des configurations centrales de quatre corps, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 2, 217–220 (French, with English and French summaries). MR 1320359 (95k:70023)
  • 2. A. Albouy, Recherches sur le problème des $n$ corps, Notes scientifiques et techniques du Bureau des Longitudes, Paris, (1997) 78.
  • 3. O. Dziobek, Über einen merkwürdigen Fall des Vielkörperproblems, Astron. Nach. 152 (1900) 33-46.
  • 4. Joe Harris, Algebraic geometry, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992. A first course. MR 1182558 (93j:14001)
  • 5. R. P. Kuz′mina, An upper bound for the number of central configurations in the plane 𝑛-body problem, Dokl. Akad. Nauk SSSR 234 (1977), no. 5, 1016–1019 (Russian). MR 0494263 (58 #13169)
  • 6. J.L. Lagrange, Ouvres, vol 6, 272.
  • 7. P. S. Laplace, Sur quelques points du système du monde, Mémoires de l'Académie Royale des Sciences de Paris (1789) article XXIII ou Oeuvres Complètes, vol 11, 553.
  • 8. R. Lehmann-Filhés, Ueber zwei Fälle des Vielkörpersprblems, Astron. Nach. 127 (1891) 137-143.
  • 9. W. D. MacMillan & W. Bartky, Permanent configurations in the problem of four bodies, Trans. Amer. Math. Soc. 34 (1932) 838-875.
  • 10. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275–280. MR 0161339 (28 #4547),
  • 11. Richard Moeckel, Relative equilibria of the four-body problem, Ergodic Theory Dynam. Systems 5 (1985), no. 3, 417–435. MR 805839 (87b:70011),
  • 12. F.R. Moulton, The straight line solutions of the problem of N bodies, in Ann. of Math. 2-12 (1910) 1-17.
  • 13. Igor R. Shafarevich, Basic algebraic geometry. 1, 2nd ed., Springer-Verlag, Berlin, 1994. Varieties in projective space; Translated from the 1988 Russian edition and with notes by Miles Reid. MR 1328833 (95m:14001)
  • 14. René Thom, Sur l’homologie des variétés algébriques réelles, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 255–265 (French). MR 0200942 (34 #828)
  • 15. W. L. Williams, Permanent configurations in the problem of five bodies, Trans. Amer. Math. Soc. 44 (1938) 563-579.
  • 16. Aurel Wintner, The Analytical Foundations of Celestial Mechanics, Princeton Mathematical Series, v. 5, Princeton University Press, Princeton, N. J., 1941. MR 0005824 (3,215b)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 70F10, 70F15, 37N05

Retrieve articles in all journals with MSC (1991): 70F10, 70F15, 37N05

Additional Information

Richard Moeckel
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455

PII: S 0002-9947(01)02828-8
Keywords: Celestial mechanics, central configurations, $n$-body problem
Received by editor(s): December 29, 2000
Published electronically: April 24, 2001
Article copyright: © Copyright 2001 American Mathematical Society