Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The extraspecial case of the $k(GV)\;$ problem


Authors: David Gluck and Kay Magaard
Journal: Trans. Amer. Math. Soc. 354 (2002), 287-333
MSC (2000): Primary 20C20; Secondary 20C33, 20D06, 20E28
DOI: https://doi.org/10.1090/S0002-9947-01-02839-2
Published electronically: August 29, 2001
MathSciNet review: 1859277
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $E$ be an extraspecial-type group and $V$ a faithful, absolutely irreducible $k[E]$-module, where $k$ is a finite field. Let $G$ be the normalizer in $GL(V)$ of $E$. We show that, with few exceptions, there exists a $v\in V$such that the restriction of $V$ to $C_H(v)$ is self-dual whenever $H\le G$and $(\vert H\vert, \vert V\vert)=1$.


References [Enhancements On Off] (What's this?)

  • [A] J. H. Conway, et al., Atlas of Finite Groups, Clarendon, Oxford, 1985. MR 88g:20025
  • [As] M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986. MR 89b:20001
  • [C] B. Cooperstein, Minimal degree permutation representation of a classical group, Israel J. Math. 30 (1978), 213-235. MR 58:22255
  • [D] L. Dornhoff, Group Representation Theory (A), Marcel Dekker, New York, 1971. MR 50:458a
  • [Gd1] D. Goodwin, Regular orbits of linear groups with an application to the $k(GV)$-problem, I, J. Algebra 227 (2000), 395-432. MR 2001b:20010
  • [Gd2] D. Goodwin, Regular orbits of linear groups with an application to the $k(GV)$-problem, II, J. Algebra 227 (2000), 433-473. MR 2001b:20010
  • [Gl1] D. Gluck, On the $k(GV)$ problem, J. Algebra 89 (1984), 46-55. MR 86b:20010
  • [Gl2] D. Gluck, Sharper character value estimates for groups of Lie type, J. Algebra 174 (1995), 229-266. MR 96m:20021
  • [Go] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968. MR 38:229
  • [Gr1] R. Griess, Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology, Pac. J. Math. 48 (1973), 403-422. MR 57:16429
  • [Gr2] R. Griess, Schur multipliers of the known finite simple groups, II, in Proc. Sympos. Pure Math, Vol. 37, Amer. Math. Soc., pp. 279-282, Providence, 1980. MR 82g:20025
  • [Gr3] R. Griess, Sporadic groups, code loops, and nonvanishing cohomology, J. Pure Appl. Algebra 44 (1987), 191-214. MR 88c:20024
  • [Gw] R. Gow, On the number of characters in a block and the $ k(GV)$ problem for self-dual V, J. London Math. Soc. 48 (1993), 441-451. MR 94i:20020
  • [GM] D. Gluck and K. Magaard, Character and fixed point ratios in finite classical groups, Proc. London Math. Soc. 71 (1995), 547-584. MR 96f:20017
  • [GMS] R. Guralnick, K. Magaard, and J. Saxl, Small cross characteristic representations for odd characteristic symplectic groups, preprint, 1997.
  • [He] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II, J. Algebra 93 (1985), 151-164. MR 86k:20046
  • [Hu] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. MR 37:302
  • [Is1] I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-635. MR 48:11270
  • [Is2] I. M. Isaacs, Character correspondences in solvable groups, Adv. Math. 43 (1982), 284-306. MR 83i:20007
  • [J] G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Camb. Phil. Soc. 94 (1983), 417-424. MR 86c:20018
  • [K] R. Knörr, On the number of characters in a p-block of a p-solvable group, Illinois J. Math. 28 (1984), 181-210. MR 85d:20006
  • [KL] P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990. MR 91g:20001
  • [KP] C. Koehler and H. Pahlings, Regular orbits and the $ k(GV) $-problem, preprint, 1999.
  • [L1] M. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. 54 (1987), 477-516. MR 88m:20004
  • [L2] M. Liebeck, Regular orbits of linear groups, J. Algebra 184 (1996), 1136-1142. MR 98g:20023
  • [LS] V. Landazuri and G. Seitz, On the minimal degree of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443. MR 50:13299
  • [M] H. H. Mitchell, The subgroups of the quaternary abelian linear group, Trans. Amer. Math. Soc. 15 (1914), 379-396. CMP 95:18
  • [MW] O. Manz and T. R. Wolf, Representations of Solvable Groups, Cambridge University Press, Cambridge, 1993. MR 95c:20013
  • [R1] G. R. Robinson, Some remarks on the $k(GV)$ problem, J. Algebra 172 (1995), 159-166. MR 96c:20014
  • [R2] G. R. Robinson, Further reductions for the $k(GV)$-problem, J. Algebra 195 (1997), 141-150. MR 98d:20004
  • [Ri1] U. Riese, Further reductions on the quasisimple case of the $k(GV)$-conjecture, J. Algebra 235 (2001), 45-65.
  • [Ri2] U. Riese, On the extraspecial case of the $k(GV)$-conjecture, preprint, 1999.
  • [RS] U. Riese and P. Schmid, Self-dual modules and real vectors for solvable groups, J. Algebra 227 (2000), 159-171. MR 2001f:20024
  • [RT] G. R. Robinson and J. G. Thompson, On Brauer's $k(B)$problem, J. Algebra 184 (1996), 1143-1160. MR 97m:20014
  • [Si] P. Sin, Modular representations of the Hall-Janko group. Comm. Alg. 24 (1996), 4513-4547. MR 97j:20016
  • [Sr] B. Srinivasan, The characters of the finite symplectic group $Sp(4,q)$, Trans. Amer. Math. Soc. 131 (1968), 488-525. MR 36:3897
  • [SZ] G. Seitz and A. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups, II, J. Algebra 158 (1993), 233-243. MR 94h:20017
  • [W] A. Wagner, An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field, Arch. Math. 29 (1977), 583-589. MR 57:444

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C20, 20C33, 20D06, 20E28

Retrieve articles in all journals with MSC (2000): 20C20, 20C33, 20D06, 20E28


Additional Information

David Gluck
Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Email: dgluck@math.wayne.edu

Kay Magaard
Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
Email: kaym@math.wayne.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02839-2
Received by editor(s): August 12, 1999
Received by editor(s) in revised form: January 2, 2001
Published electronically: August 29, 2001
Additional Notes: Research of both authors partially supported by NSA grants.
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society