The extraspecial case of the problem

Authors:
David Gluck and Kay Magaard

Journal:
Trans. Amer. Math. Soc. **354** (2002), 287-333

MSC (2000):
Primary 20C20; Secondary 20C33, 20D06, 20E28

DOI:
https://doi.org/10.1090/S0002-9947-01-02839-2

Published electronically:
August 29, 2001

MathSciNet review:
1859277

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be an extraspecial-type group and a faithful, absolutely irreducible -module, where is a finite field. Let be the normalizer in of . We show that, with few exceptions, there exists a such that the restriction of to is self-dual whenever and .

**[A]**J. H. Conway, et al., Atlas of Finite Groups, Clarendon, Oxford, 1985. MR**88g:20025****[As]**M. Aschbacher, Finite Group Theory, Cambridge University Press, Cambridge, 1986. MR**89b:20001****[C]**B. Cooperstein, Minimal degree permutation representation of a classical group, Israel J. Math. 30 (1978), 213-235. MR**58:22255****[D]**L. Dornhoff, Group Representation Theory (A), Marcel Dekker, New York, 1971. MR**50:458a****[Gd1]**D. Goodwin, Regular orbits of linear groups with an application to the -problem, I, J. Algebra 227 (2000), 395-432. MR**2001b:20010****[Gd2]**D. Goodwin, Regular orbits of linear groups with an application to the -problem, II, J. Algebra 227 (2000), 433-473. MR**2001b:20010****[Gl1]**D. Gluck, On the problem, J. Algebra 89 (1984), 46-55. MR**86b:20010****[Gl2]**D. Gluck, Sharper character value estimates for groups of Lie type, J. Algebra 174 (1995), 229-266. MR**96m:20021****[Go]**D. Gorenstein, Finite Groups, Harper and Row, New York, 1968. MR**38:229****[Gr1]**R. Griess, Automorphisms of extraspecial groups and nonvanishing degree 2 cohomology, Pac. J. Math. 48 (1973), 403-422. MR**57:16429****[Gr2]**R. Griess, Schur multipliers of the known finite simple groups, II, in Proc. Sympos. Pure Math, Vol. 37, Amer. Math. Soc., pp. 279-282, Providence, 1980. MR**82g:20025****[Gr3]**R. Griess, Sporadic groups, code loops, and nonvanishing cohomology, J. Pure Appl. Algebra 44 (1987), 191-214. MR**88c:20024****[Gw]**R. Gow, On the number of characters in a block and the problem for self-dual V, J. London Math. Soc. 48 (1993), 441-451. MR**94i:20020****[GM]**D. Gluck and K. Magaard, Character and fixed point ratios in finite classical groups, Proc. London Math. Soc. 71 (1995), 547-584. MR**96f:20017****[GMS]**R. Guralnick, K. Magaard, and J. Saxl, Small cross characteristic representations for odd characteristic symplectic groups, preprint, 1997.**[He]**C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, II, J. Algebra 93 (1985), 151-164. MR**86k:20046****[Hu]**B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967. MR**37:302****[Is1]**I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-635. MR**48:11270****[Is2]**I. M. Isaacs, Character correspondences in solvable groups, Adv. Math. 43 (1982), 284-306. MR**83i:20007****[J]**G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Camb. Phil. Soc. 94 (1983), 417-424. MR**86c:20018****[K]**R. Knörr, On the number of characters in a p-block of a p-solvable group, Illinois J. Math. 28 (1984), 181-210. MR**85d:20006****[KL]**P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990. MR**91g:20001****[KP]**C. Koehler and H. Pahlings, Regular orbits and the -problem, preprint, 1999.**[L1]**M. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc. 54 (1987), 477-516. MR**88m:20004****[L2]**M. Liebeck, Regular orbits of linear groups, J. Algebra 184 (1996), 1136-1142. MR**98g:20023****[LS]**V. Landazuri and G. Seitz, On the minimal degree of projective representations of the finite Chevalley groups, J. Algebra 32 (1974), 418-443. MR**50:13299****[M]**H. H. Mitchell, The subgroups of the quaternary abelian linear group, Trans. Amer. Math. Soc. 15 (1914), 379-396. CMP**95:18****[MW]**O. Manz and T. R. Wolf, Representations of Solvable Groups, Cambridge University Press, Cambridge, 1993. MR**95c:20013****[R1]**G. R. Robinson, Some remarks on the problem, J. Algebra 172 (1995), 159-166. MR**96c:20014****[R2]**G. R. Robinson, Further reductions for the -problem, J. Algebra 195 (1997), 141-150. MR**98d:20004****[Ri1]**U. Riese, Further reductions on the quasisimple case of the -conjecture, J. Algebra 235 (2001), 45-65.**[Ri2]**U. Riese, On the extraspecial case of the -conjecture, preprint, 1999.**[RS]**U. Riese and P. Schmid, Self-dual modules and real vectors for solvable groups, J. Algebra 227 (2000), 159-171. MR**2001f:20024****[RT]**G. R. Robinson and J. G. Thompson, On Brauer's problem, J. Algebra 184 (1996), 1143-1160. MR**97m:20014****[Si]**P. Sin, Modular representations of the Hall-Janko group. Comm. Alg. 24 (1996), 4513-4547. MR**97j:20016****[Sr]**B. Srinivasan, The characters of the finite symplectic group , Trans. Amer. Math. Soc. 131 (1968), 488-525. MR**36:3897****[SZ]**G. Seitz and A. Zalesskii, On the minimal degrees of projective representations of the finite Chevalley groups, II, J. Algebra 158 (1993), 233-243. MR**94h:20017****[W]**A. Wagner, An observation on the degrees of projective representations of the symmetric and alternating groups over an arbitrary field, Arch. Math. 29 (1977), 583-589. MR**57:444**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20C20,
20C33,
20D06,
20E28

Retrieve articles in all journals with MSC (2000): 20C20, 20C33, 20D06, 20E28

Additional Information

**David Gluck**

Affiliation:
Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Email:
dgluck@math.wayne.edu

**Kay Magaard**

Affiliation:
Department of Mathematics, Wayne State University, Detroit, Michigan 48202

Email:
kaym@math.wayne.edu

DOI:
https://doi.org/10.1090/S0002-9947-01-02839-2

Received by editor(s):
August 12, 1999

Received by editor(s) in revised form:
January 2, 2001

Published electronically:
August 29, 2001

Additional Notes:
Research of both authors partially supported by NSA grants.

Article copyright:
© Copyright 2001
American Mathematical Society