Intertwining operator superalgebras and vertex tensor categories for superconformal algebras, II

Authors:
Yi-Zhi Huang and Antun Milas

Journal:
Trans. Amer. Math. Soc. **354** (2002), 363-385

MSC (1991):
Primary 17B69, 17B68; Secondary 17B65, 81R10, 81T40, 81T60

DOI:
https://doi.org/10.1090/S0002-9947-01-02869-0

Published electronically:
August 21, 2001

MathSciNet review:
1859279

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct the intertwining operator superalgebras and vertex tensor categories for the superconformal unitary minimal models and other related models.

**[A1]**D. Adamovic, Representations of the vertex operator superalgebra,*Internat. Math. Res. Notices***1999**(1999), 62-79. MR**99m:17032****[A2]**D. Adamovic, Rationality of unitary vertex operator superalgebras,`math.QA/9909055`, to appear.**[A3]**D. Adamovic, Vertex algebra approach to fusion rules for superconformal minimal models, to appear.**[AM]**D. Adamovic and A. Milas, Vertex operator algebras associated to modular invariant representations for ,*Math. Res. Lett.***2**(1995), 563-575. MR**96m:17047****[Ba1]**K. Barron, The supergeometric interpretation of vertex operator superalgebras, Ph.D. thesis, Rutgers University, 1996.**[Ba2]**K. Barron, Neveu-Schwarz vertex operator superalgebras over Grassmann algebras and with odd formal variables, in:*Representations and quantizations*(*Shanghai, 1998*), China High. Educ. Press, Beijing, 2000, pp. 9-35. CMP**2001:06****[D]**M. Doerrzapf, The embedding structure of unitary minimal models,*Nucl. Phys.***B529**(1998), 639-655.**[DMZ]**C. Dong, G. Mason and Y. Zhu, Discrete series of the Virasoro algebra and the moonshine module, in:*Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991)*, Proc. Sympos. Pure Math., Vol. 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, 295-316. MR**95c:17043****[EG]**W. Eholzer and M. R. Gaberdiel, Unitarity of rational superconformal theories,*Comm. Math. Phys.***186**(1997), 61-85. MR**99e:81075****[FF]**B. Feigin and E. Frenkel, Integrals of motion and quantum groups, in:*Integrable systems and quantum groups (Montecatini Terme, 1993),*Lecture Notes in Math., Vol. 1620, Springer, Berlin, 1996, 349-418. MR**97d:58093****[FHL]**I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, preprint, 1989;*Memoirs Amer. Math. Soc.***104**, 1993. MR**94a:17007****[FLM]**I. B. Frenkel, J. Lepowsky, and A. Meurman,*Vertex operator algebras and the Monster*, Pure and Appl. Math.,**134**, Academic Press, New York, 1988. MR**90h:17026****[FS]**B. L. Feigin and A. M. Semikhatov, Free-field resolutions of the unitary super-Virasoro representations,`hep-th/9810059`, to appear.**[FSST]**B. L. Feigin, A. M. Semikhatov, V. A. Sirota and I. Y. Tipunin, Resolutions and characters of irreducible representations of the superconformal algebra,*Nucl. Phys.***B536**(1999), 617-656. MR**2000a:81077****[FST]**B. L. Feigin, A. M. Semikhatov and I. Y. Tipunin, Equivalence between chain categories of representations of affine and superconformal algebras,*J. Math. Phys.***39**(1998), 3865-3905. MR**2000i:81047****[FZ]**I. B. Frenkel and Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras,*Duke Math. J.***66**(1992), 123-168. MR**93g:17045****[Ge1]**D. Gepner, Exactly solvable string compactifications on manifolds of holonomy,*Phys. Lett.***B199**(1987), 380-388. MR**89h:83035****[Ge2]**D. Gepner, Space-time supersymmetry in compactified string theory and superconformal models,*Nucl. Phys.***B296**(1988), 757-778. MR**89b:81189****[Gr]**B. R. Greene, Aspects of quantum geometry, in:*Mirror Symmetry III, Proceedings of the Conference on Complex Geometry and Mirror Symmetry, Montréal, 1995,*Stud. Adv. Math., Vol. 10, Amer. Math. Soc., Internat. Press and Centre de Recherches Math., 1-67. MR**2000e:81256****[GP]**B. R. Greene and M. R. Plesser, Duality in Calabi-Yau moduli space,*Nucl. Phys.***B338**(1990), 15-37. MR**91h:32018****[H1]**Y.-Z. Huang, A theory of tensor products for module categories for a vertex operator algebra, IV,*J. Pure Appl. Alg.*,**100**(1995), 173-216. MR**98a:17050****[H2]**Y.-Z. Huang, Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory,*J. Alg.***182**(1996), 201-234. MR**97h:17029****[H3]**Y.-Z. Huang, Intertwining operator algebras, genus-zero modular functors and genus-zero conformal field theories, in:*Operads: Proceedings of Renaissance Conferences*, ed. J.-L. Loday, J. Stasheff, and A. A. Voronov, Contemporary Math.,**202**, Amer. Math. Soc., Providence, 1997, 335-355. MR**98a:17051****[H4]**Y.-Z. Huang,*Two-dimensional conformal geometry and vertex operator algebras*, Progress in Mathematics, Vol. 148, Birkhäuser, Boston, 1997. MR**98i:17037****[H5]**Y.-Z. Huang, Genus-zero modular functors and intertwining operator algebras,*Internat. J. Math.***9**(1998), 845-863. MR**99i:17031****[H6]**Y.-Z. Huang, Generalized rationality and a generalized Jacobi identity for intertwining operator algebras,*Selecta Math.*(*N.S.*)**6**(2000), 225-267.**[HL1]**Y.-Z. Huang and J. Lepowsky,

Toward a theory of tensor products for representations of a vertex operator algebra,

in:*Proc. 20th International Conference on Differential Geometric Methods in Theoretical Physics, New York, 1991*,

ed. S. Catto and A. Rocha,

World Scientific, Singapore, 1992, Vol. 1, 344-354. MR**94k:17045****[HL2]**Y.-Z. Huang and J. Lepowsky, Operadic formulation of the notion of vertex operator algebra, in:*Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Proc. Joint Summer Research Conference, Mount Holyoke, 1992*, ed. P. Sally, M. Flato, J. Lepowsky, N. Reshetikhin and G. Zuckerman,

Contemporary Math., Vol. 175, Amer. Math. Soc., Providence, 1994, 131-148. MR**95m:17022****[HL3]**Y.-Z. Huang and J. Lepowsky, Tensor products of modules for a vertex operator algebra and vertex tensor categories, in:*Lie Theory and Geometry, in honor of Bertram Kostant,*ed. R. Brylinski, J.-L. Brylinski, V. Guillemin, and V. Kac, Birkhäuser, Boston, 1994, 349-383. MR**96e:17061****[HL4]**Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, I,*Selecta Mathematica, New Series***1**(1995), 699-756. MR**98a:17047****[HL5]**Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, II,*Selecta Mathematica, New Series***1**(1995), 757-786. MR**98a:17047****[HL6]**Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, III,*J. Pure Appl. Alg.***100**(1995), 141-171. MR**98a:17049****[HL7]**Y.-Z. Huang and J. Lepowsky, Intertwining operator algebras and vertex tensor categories for affine Lie algebras,*Duke Math. J.***99**(1999), 113-134. CMP**99:16****[HL8]**Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, V, to appear.**[HM]**Y.-Z. Huang and A. Milas, Intertwining operator superalgebras and vertex tensor categories for superconformal algebras, I,`math.QA/9909039`, IHES preprint IHES/M/99/69, to appear;**[HZ]**Y.-Z. Huang and W. Zhao, Semi-infinite forms and topological vertex operator algebras,*Commun. Contemp. Math.***2**(2000), 191-241. CMP**2000:13****[L]**B. Lian, On the classification of simple vertex operator algebras,*Comm. Math. Phys.***163**(1994), 307-357. MR**95i:17033**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
17B69,
17B68,
17B65,
81R10,
81T40,
81T60

Retrieve articles in all journals with MSC (1991): 17B69, 17B68, 17B65, 81R10, 81T40, 81T60

Additional Information

**Yi-Zhi Huang**

Affiliation:
Department of Mathematics, Kerchof Hall, University of Virginia, Charlottesville, Virginia 22904-4137 and Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019 (permanent address)

Email:
yzhuang@math.rutgers.edu

**Antun Milas**

Affiliation:
Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscataway, New Jersey 08854-8019

Email:
amilas@math.rutgers.edu

DOI:
https://doi.org/10.1090/S0002-9947-01-02869-0

Keywords:
$N=2$ superconformal algebras,
intertwining operator superalgebras,
vertex tensor categories

Received by editor(s):
April 18, 2000

Received by editor(s) in revised form:
February 21, 2001

Published electronically:
August 21, 2001

Additional Notes:
The research of Y.-Z. H. is supported in part by NSF grants DMS-9622961 and DMS-0070800.

The research of A. M. is supported in part by NSF grants.

Article copyright:
© Copyright 2001
American Mathematical Society