Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Second order Lagrangian Twist systems: simple closed characteristics


Authors: J. B. Van den Berg and R. C. Vandervorst
Journal: Trans. Amer. Math. Soc. 354 (2002), 1393-1420
MSC (1991): Primary 34C12, 49Jxx, 49S05, 70Hxx, 70Kxx
DOI: https://doi.org/10.1090/S0002-9947-01-02882-3
Published electronically: November 8, 2001
MathSciNet review: 1873011
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider a special class of Lagrangians that play a fundamental role in the theory of second order Lagrangian systems: Twist systems. This subclass of Lagrangian systems is defined via a convenient monotonicity property that such systems share. This monotonicity property (Twist property) allows a finite dimensional reduction of the variational principle for finding closed characteristics in fixed energy levels. This reduction has some similarities with the method of broken geodesics for the geodesic variational problem on Riemannian manifolds. On the other hand, the monotonicity property can be related to the existence of local Twist maps in the associated Hamiltonian flow.

The finite dimensional reduction gives rise to a second order monotone recurrence relation. We study these recurrence relations to find simple closed characteristics for the Lagrangian system. More complicated closed characteristics will be dealt with in future work. Furthermore, we give conditions on the Lagrangian that guarantee the Twist property.


References [Enhancements On Off] (What's this?)

  • 1. N.N. Akmediev, A.V. Buryak and M. Karlsson, Radiationless optical solitons with oscillating tails, Opt. Comm. 110 (1994), 540-544.
  • 2. S.B. Angenent, The periodic orbits of an area preserving Twist-map, Comm. Math. Phys. 115 (1988), 353-374. MR 89f:58118
  • 3. S.B. Angenent, Monotone recurrence relations, their Birkhoff orbits and topological entropy, Erg. Th. & Dyn. Syst. 10 (1990), 15-41. MR 91b:58181
  • 4. V.I. Arnol'd and S.P. Novikov, Dynamical Systems IV, Springer Verlag 1990. MR 90j:58039
  • 5. V.I. Arnol'd, Mathematical methods of classical mechanics, Springer-Verlag, 1978. MR 96c:70001
  • 6. S. Aubry and P.Y. LeDaeron, The discrete Frenkel-Kontorova model and its extensions, Physica D 8 (1983), 381-422. MR 85f:58032
  • 7. V. Benci, A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl. 158 (1991) 231-305. MR 92k:58043
  • 8. V. Benci and F. Giannoni Morse theory for functionals of class $C^1$, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 883-888. MR 93i:58027
  • 9. B. Buffoni, A.R. Champneys and J.F. Toland, Bifurcation and coalescence of multi-modal homoclinic orbits for a Hamiltonian system, J. Dynamics and Diff. Eqns. 8 (1996), 221-281. MR 97m:58143
  • 10. C. Conley, Isolated invariant sets and the Morse index, C.B.M.S. Reg. Conf. Ser. Math. 38 (1978), published by the AMS. MR 80c:58009
  • 11. M.G. Crandall, P.H. Rabinowitz and L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Part. Diff. Eqns. 2 (1977), 193-222. MR 55:856
  • 12. R. Ghrist, J.B. Van den Berg and R.C.A.M. Vandervorst, Closed characteristics of fourth-order Twist systems via braids, Comptes Rendus Ac. Sc. Paris, 331 (2000), 861-865. MR 2001:06
  • 13. R. Ghrist, J.B. Van den Berg and R.C.A.M. Vandervorst, Morse theory on spaces of braids and Lagrangian dynamics, preprint (2001).
  • 14. J. Hulshof, J.B. Van den Berg and R.C.A.M. Vandervorst, Traveling waves for fourth-order semilinear parabolic equations, SIAM J. Math. Anal. 32 (2001), 1342-1374.
  • 15. W.D. Kalies and R.C.A.M. Vandervorst, Multitransition homoclinic and heteroclinic solutions of the extended Fisher-Kolmogorov equation, J. Diff. Eqns. 131 (1996), 209-228. MR 97h:34050
  • 16. W.D. Kalies and R.C.A.M. Vandervorst, Second order Lagrangians musings, in preparation.
  • 17. W.D. Kalies, J. Kwapisz and R.C.A.M. Vandervorst, Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria, Comm. Math. Phys. 193 (1998), 337-371. MR 99g:34102
  • 18. W.D. Kalies, J. Kwapisz, J.B. Van den Berg and R.C.A.M. Vandervorst, Homotopy classes for stable periodic and chaotic patterns in fourth-order Hamiltonian systems, Comm. Math. Phys. 214 (2000), 573-592. CMP 2001:05
  • 19. J. Kwapisz, Uniqueness of the stationary wave for the extended Fisher-Kolmogorov equation, J. Diff. Eq.165 (2000), 235-253. CMP 2000:15
  • 20. J. Kwapisz, (personal communication).
  • 21. J.D. Logan, Invariant variational principles, Math. Science Eng. 138, Academic Press 1977. MR 58:18024
  • 22. J.N. Mather, Existence of quasi-periodic orbits for twist diffeomorphisms of the annulus, Topology 21 (1982), 457-467.
  • 23. J. Milnor, Morse Theory, Ann. Math. Studies 51, Princeton University Press, 1963. MR 29:634
  • 24. V.J. Mizel, L.A. Peletier and W.C. Troy, Periodic phases in second order materials, Arch. Rat. Mech. Anal. 145 (1998) 343-382. MR 99j:73011
  • 25. P. LeCalvez Propriété dynamique des diffeomorphismes de l'anneau et du tore, Astérique 204, 1991. MR 94d:58092
  • 26. L.A. Peletier and A.I. Rotariu-Bruma, Solitary wave solutions to a four-parameter model for water waves, preprint (1999).
  • 27. L.A. Peletier, A.I. Rotariu-Bruma and W.C. Troy, Pulse-like spatial patterns described by higher-order model equations, J. Diff. Eqns. 150 (1998), 124-187. MR 99j:35098
  • 28. L.A. Peletier and W.C. Troy, Spatial patterns described by the extended Fisher-Kolmogorov equation: kinks, Diff. Int. Eqns. 8 (1995), 1279-1304. MR 96c:35182
  • 29. L.A. Peletier and W.C. Troy, Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions, SIAM J. Math. Anal. 28(6) (1997), 1317-1353. MR 98k:35198
  • 30. L.A. Peletier and W.C. Troy, Multibump periodic traveling waves in suspension bridges, Proc. Roy. Soc. Edin. 128A (1998), 631-659. MR 99h:34038
  • 31. L.A. Peletier, W.C. Troy and J.B. Van den Berg Global branches of multi bump periodic solutions of the Swift-Hohenberg equation, Arch. Rat. Mech. Anal. 158 (2001), 91-153. CMP 2001:14
  • 32. J. Swift and P.C. Hohenberg, Hydrodynamic fluctuations at the convective instability, Phys. Rev. A 15 (1977), 319-328.
  • 33. J.B. Van den Berg, The phase-plane picture for a class of fourth-order conservative differential equations, J. Diff. Eq. 161 (2000), 110-153. MR 2000k:34074

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34C12, 49Jxx, 49S05, 70Hxx, 70Kxx

Retrieve articles in all journals with MSC (1991): 34C12, 49Jxx, 49S05, 70Hxx, 70Kxx


Additional Information

J. B. Van den Berg
Affiliation: Division of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom
Email: Jan.Bouwe@nottingham.ac.uk

R. C. Vandervorst
Affiliation: Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
Address at time of publication: Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0190
Email: rvander@math.gatech.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02882-3
Received by editor(s): January 18, 2000
Published electronically: November 8, 2001
Additional Notes: The first author was supported by grants TMR ERBFMRXCT980201 and NWO SIR13-4785
The second author by grants ARO DAAH-0493G0199 and NIST G-06-605
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society