Isoperimetric regions in cones

Authors:
Frank Morgan and Manuel Ritoré

Journal:
Trans. Amer. Math. Soc. **354** (2002), 2327-2339

MSC (2000):
Primary 53C42; Secondary 49Q20

DOI:
https://doi.org/10.1090/S0002-9947-02-02983-5

Published electronically:
February 12, 2002

MathSciNet review:
1885654

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider cones and prove that if the Ricci curvature of is nonnegative, then geodesic balls about the vertex minimize perimeter for given volume. If strict inequality holds, then they are the only stable regions.

**[A]**W. K. Allard,*On the first variation of a varifold*, Ann. of Math.,**95**(1972) 417-491. MR**46:6136****[BdC]**J. L. Barbosa and M. do Carmo,*Stability of hypersurfaces with constant mean curvature*, Math. Z.**185**(1984) 339-353. MR**85k:58021c****[BdCE]**J. L. Barbosa, M. do Carmo and J. Eschenburg,*Stability of hypersurfaces with constant mean curvature in Riemannian manifolds*, Math. Z.,**197**(1988) 123-138. MR**88m:53109****[BM]**P. Bérard, D. Meyer,*Inégalités isopérimétriques et applications*, Ann. Scient. Éc. Norm. Sup. (4),**15**(1982) 513-542. MR**84h:58147****[Br]**H. Bray,*The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature*, Ph. D. Thesis, Stanford University, 1997.**[BrM]**H. Bray, F. Morgan,*An isoperimetric comparison theorem for Schwarzchild space and other manifolds*, Proc. Amer. Math. Soc., to appear.**[CE]**J. Cao and J. F. Escobar,*A new 3-dimensional curvature integral formula for PL-manifolds of nonpositive curvature*, preprint, 2000.**[C]**I. Chavel,*Riemannian geometry: a modern introduction*, Cambridge Tracts in Mathematics, no. 108, Cambridge University Press, 1993. MR**95j:53001****[CFG]**A. Cotton, D. Freeman, A. Gnepp, T. Ng, J. Spivack, C. Yoder (Williams College NSF ``SMALL'' undergraduate research Geometry Groups 1998, 2000),*The isoperimetric problem on singular surfaces*, preprint (2000).**[F]**H. Federer,*Geometric measure theory*, Grundlehren Math. Wissen.**153**, Springer-Verlag, New York, 1969. MR**41:1976****[GNY]**A. Gnepp, T. F. Ng, C. Yoder,*Isoperimetric domains on polyhedra and singular surfaces*, NSF ``SMALL'' undergraduate research Geometry Group report, Williams College, 1998.**[HHM]**H. Howards, M. Hutchings, F. Morgan,*The isoperimetric problem on surfaces*, Amer. Math. Monthly,**106**, no. 5, (1999) 430-439. MR**2000i:52027****[Mo]**S. Montiel,*Unicity of constant mean curvature hypersurfaces in foliated Riemannian manifolds*, Indiana Univ. Math. J.,**48**, no. 2, (1999) 711-748. MR**2001f:53131****[M1]**F. Morgan,*Geometric measure theory: a beginner's guide*. Third edition, Academic Press, 2000. MR**2001j:49001****[M2]**F. Morgan,*Area-minimizing surfaces in cones*, Comm. Anal. Geom., to appear.**[MJ]**F. Morgan, D. Johnson,*Some sharp isoperimetric theorems for Riemannian manifolds*, Indiana Univ. Math. J.,**49**(2000) 1017-1041.**[ON]**B. O'Neill,*Semi-Riemmanian geometry*, Academic Press, New York, 1983. MR**85f:53002****[P]**R. Pedrosa,*The isoperimetric problem in spherical cylinders*, preprint, 2002.**[PR]**R. Pedrosa, M. Ritoré,*Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems*, Indiana Univ. Math. J.,**48**(1999) 1357-1394. MR**2001k:53120****[R1]**M. Ritoré,*Applications of compactness results for harmonic maps to stable constant mean curvature surfaces*, Math. Z.,**226**(1997) 465-481. MR**98m:53082****[RR]**M. Ritoré, A. Ros,*Stable constant mean curvature tori and the isoperimetric problem in three space forms*, Comment. Math. Helv.,**67**(1992) 293-305. MR**93a:53055****[SS]**R. Schoen, L. Simon,*Regularity of stable minimal hypersurfaces*, Comm. Pure App. Math.,**34**(1981) 741-797. MR**82k:49054****[S]**L. Simon,*Lectures on geometric measure theory*, Proc. Centre Math. Anal.**3**, Australian National University, 1983. MR**87a:49001****[SZ]**P. Sternberg, K. Zumbrun,*On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint*, Comm. Anal. Geom.,**7**, no. 1, (1999) 199-220. MR**2000d:49062****[T]**Y. Tashiro,*Complete Riemannian manifolds and some vector fields*, Trans. Amer. Math. Soc.,**117**(1965) 251-275. MR**30:4229**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
53C42,
49Q20

Retrieve articles in all journals with MSC (2000): 53C42, 49Q20

Additional Information

**Frank Morgan**

Affiliation:
Department of Mathematics, Williams College, Williamstown, Massachusetts 01267

Email:
Frank.Morgan@williams.edu

**Manuel Ritoré**

Affiliation:
Departamento de Geometría y Topología, Universidad de Granada, E–18071 Granada, España

Email:
ritore@ugr.es

DOI:
https://doi.org/10.1090/S0002-9947-02-02983-5

Received by editor(s):
May 23, 2001

Received by editor(s) in revised form:
November 1, 2001

Published electronically:
February 12, 2002

Article copyright:
© Copyright 2002
by the authors