Vertices for characters of -solvable groups

Author:
Gabriel Navarro

Journal:
Trans. Amer. Math. Soc. **354** (2002), 2759-2773

MSC (2000):
Primary 20C15

DOI:
https://doi.org/10.1090/S0002-9947-02-02974-4

Published electronically:
March 14, 2002

MathSciNet review:
1895202

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that is a finite -solvable group. We associate to every irreducible complex character of a canonical pair , where is a -subgroup of and , uniquely determined by up to -conjugacy. This pair behaves as a Green vertex and partitions into ``families" of characters. Using the pair , we give a canonical choice of a certain -radical subgroup of and a character associated to which was predicted by some conjecture of G. R. Robinson.

**[1]**L. Barker, Defects of irreducible characters of -soluble groups, J. Algebra**202**(1998), 178-184. MR**99b:20014****[2]**D. Gajendragadkar, A characteristic class of characters of finite -separable groups, J. Algebra**59**(1979), 237-259. MR**82b:20012****[3]**I. M. Isaacs, Characters of -separable groups, J. Algebra**86**(1984), 98-128. MR**85h:20012****[4]**I. M. Isaacs, Character Theory of Finite Groups, Dover, New York, 1994. MR**57:417**(1st ed.)**[5]**I. M. Isaacs, G. Navarro, Weights and vertices for characters of -separable groups, J. Algebra**177**(1995), 339-366. MR**97a:20006****[6]**I. M. Isaacs, G. Navarro, Characters of -degree of -solvable groups, to appear in J. Algebra.**[7]**R. Knörr, On the vertices of irreducible modules, Annals of Mathematics**110**(1979), 487-499. MR**81f:20013****[8]**G. Navarro, Characters and Blocks of Finite Groups, London Math. Soc. Lecture Note Series 250, Cambridge University Press, 1998. MR**2000a:20018****[9]**G. Navarro, Induction of characters and -subgroups, to appear in J. Algebra.**[10]**G. R. Robinson, Local structure, vertices and Alperin's conjecture, Proc. London Math. Soc. (3)**72**, (1996), 312-330. MR**97c:20015****[11]**G. R. Robinson, Dade's projective conjecture for -solvable groups. J. Algebra**229**(2000), 234-248. MR**2001h:20013****[12]**T. R. Wolf, Variations on McKay's character degree conjecture, J. Algebra**135**(1990), 123-138. MR**91h:20023**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20C15

Retrieve articles in all journals with MSC (2000): 20C15

Additional Information

**Gabriel Navarro**

Affiliation:
Departament d’Àlgebra, Facultat de Matemàtiques, Universitat de València, 46100 Burjassot. València, Spain

Email:
gabriel@uv.es

DOI:
https://doi.org/10.1090/S0002-9947-02-02974-4

Received by editor(s):
March 10, 2001

Received by editor(s) in revised form:
October 10, 2001

Published electronically:
March 14, 2002

Additional Notes:
Research partially supported by DGICYT and MEC

Article copyright:
© Copyright 2002
American Mathematical Society