Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Weyl-Titchmarsh $M$-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators


Authors: Steve Clark and Fritz Gesztesy
Journal: Trans. Amer. Math. Soc. 354 (2002), 3475-3534
MSC (2000): Primary 34B20, 34E05, 34L40; Secondary 34A55
DOI: https://doi.org/10.1090/S0002-9947-02-03025-8
Published electronically: April 30, 2002
MathSciNet review: 1911509
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We explicitly determine the high-energy asymptotics for Weyl-Titchmarsh matrices associated with general Dirac-type operators on half-lines and on $\mathbb{R} $. We also prove new local uniqueness results for Dirac-type operators in terms of exponentially small differences of Weyl-Titchmarsh matrices. As concrete applications of the asymptotic high-energy expansion we derive a trace formula for Dirac operators and use it to prove a Borg-type theorem.


References [Enhancements On Off] (What's this?)

  • 1. L. Amour, Inverse spectral theory for the AKNS system with separated boundary conditions, Inverse Problems 9, 507-523 (1993). MR 94i:34034
  • 2. L. Amour and J.-C. Guillot, Isospectral sets for AKNS systems on the unit interval with generalized periodic boundary conditions, Geom. Funct. Anal. 6, 1-27 (1996). MR 96k:34184
  • 3. N. Aronszajn and W. F. Donoghue, On exponential representations of analytic functions in the upper half-plane with positive imaginary part, J. Analyse Math. 5, 321-388 (1956-57).
  • 4. D. Z. Arov and H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems,I: foundations, Integral Equations Operator Theory 29, 373-454 (1997). MR 99c:47011
  • 5. D. Z. Arov and H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems,II: the inverse monodromy problem, Integral Equations Operator Theory 36, 11-70 (2000). MR 2001g:34123
  • 6. D. Z. Arov and H. Dym, J-inner matrix functions, interpolation and inverse problems for canonical systems,III: more on the inverse monodromy problem, Integral Equations Operator Theory 36, 127-181 (2000). MR 2001i:34140
  • 7. N. Asano and Y. Kato, Algebraic and Spectral Methods for Nonlinear Wave Equations, Longman, New York, 1990. MR 92d:35001
  • 8. F. V. Atkinson, Discrete and Continuous Boundary Problems, Academic Press, New York, 1964. MR 31:416
  • 9. F. V. Atkinson, On the location of Weyl circles, Proc. Roy. Soc. Edinburgh A 88, 345-356 (1981). MR 83a:34023
  • 10. F. V. Atkinson, On the asymptotic behaviour of the Titchmarsh-Weyl m-coefficient and the spectral function for scalar second-order differential expressions, Lecure Notes in Mathematics, Vol. 964, Springer-Verlag, Berlin, 1982, pp. 1-27. MR 85b:34022
  • 11. F. V. Atkinson, On the order of magnitude of Titchmarsh-Weyl functions, Diff. Integral Eqs. 1, 79-96 (1988). MR 89d:34043
  • 12. F. V. Atkinson, Asymptotics of the Titchmarsh-Weyl function in the matrix case, unpublished manuscript.
  • 13. C. Bennewitz, A proof of the local Borg-Marchenko theorem, Comm. Math. Phys. 218, 131-132 (2001). MR 2001m:34035
  • 14. C. Bennewitz, A Paley-Wiener theorem with applications to inverse spectral theory, preprint, University of Lund, Sweden, 2000.
  • 15. G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. 78, 1-96 (1946). MR 7:382d
  • 16. G. Borg, Uniqueness theorems in the spectral theory of $y''+(\lambda -q(x))y=0$, Proc. 11th Scandinavian Congress of Mathematicians, Johan Grundt Tanums Forlag, Oslo, 1952, pp. 276-287. MR 15:315a
  • 17. R. W. Carey, A unitary invariant for pairs of self-adjoint operators, J. reine angew. Math. 283, 294-312 (1976). MR 54:3454
  • 18. I. Cherednik, Basic Methods of Soliton Theory, World Scientific, Singapore, 1996. MR 97m:58090
  • 19. S. L. Clark, On the absolutely continuous spectrum of a vector-matrix Dirac system, Proc. Roy. Soc. Edinburgh 124A, 253-262 (1994). MR 95c:34142
  • 20. S. Clark and F. Gesztesy, Weyl-Titchmarsh $M$-function asymptotics for matrix-valued Schrödinger operators, Proc. London Math. Soc. 82, 701-724 (2001). MR 2002c:34144
  • 21. S. Clark, F. Gesztesy, H. Holden, and B. M. Levitan, Borg-type theorems for matrix-valued Schrödinger operators, J. Diff. Eqs. 167, 181-210 (2000). MR 2002d:34019
  • 22. S. Clark, F. Gesztesy, and W. Renger, Trace formulas and Borg-type theorems for finite difference operators, in preparation.
  • 23. C. De Concini and R. A. Johnson, The algebraic-geometric AKNS potentials, Ergodic Theory and Dynam. Systems 7, 1-24 (1987). MR 88f:58065
  • 24. W. Craig, The trace formula for Schrödinger operators on the line, Commun. Math. Phys. 126, 379-407 (1989). MR 90m:47063
  • 25. Ju. L. Daleckii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces, Amer. Math. Soc., Providence, RI, 1974. MR 50:5126
  • 26. P. Deift and B. Simon, Almost periodic Schrödinger operators III. The absolutely continuous spectrum in one dimension, Commun. Math. Phys. 90, 389-411 (1983). MR 85i:30009b
  • 27. B. Després, The Borg theorem for the vectorial Hill's equation, Inverse Probl. 11, 97-121 (1995). MR 96a:34158
  • 28. L. A. Dickey, Soliton Equations and Hamiltonian Systems, World Scientific, Singapore, 1991. MR 93d:58067
  • 29. B. A. Dubrovin, Completely integrable Hamiltonian systems associated with matrix operators and Abelian varieties, Funct. Anal. Appl. 11, 265-277 (1977). MR 58:31219
  • 30. B. A. Dubrovin, Matrix finite-zone operators, Revs. Sci. Tech. 23, 20-50 (1983). MR 86a:58041
  • 31. W. N. Everitt, On a property of the m-coefficient of a second-order linear differential equation, J. London Math. Soc. (2), 4, 443-457 (1972). MR 45:7156
  • 32. W. N. Everitt and S. G. Halvorsen, On the asymptotic form of the Titchmarsh-Weyl m-coefficient, Applicable Anal. 8, 153-169 (1978). MR 80f:34019
  • 33. W. N. Everitt, D. B. Hinton, and J. K. Shaw, The asymptotic form of the Titchmarsh-Weyl coefficient for Dirac systems, J. London Math. Soc. (2), 27, 465-476 (1983). MR 86b:34036
  • 34. M. G. Gasymov, The inverse scattering problem for a system of Dirac equations of order $2n$, Trans. Moscow Math. Soc. 19, 41-119 (1968). MR 39:2418
  • 35. M. G. Gasymov and B. M. Levitan, The inverse problem for a Dirac system, Sov. Math. Dokl. 7, 495-499 (1966). MR 33:2859
  • 36. F. Gesztesy, Some application of commutation methods, in ``Schrödinger Operators'', H. Holden and A. Jensen (eds.), Lecture Notes in Physics, Vol. 345, Springer, Berlin, 1989, p. 1-25. MR 91g:58246
  • 37. F. Gesztesy, On the modified Korteweg-deVries equation, in ``Differential Equations with Applications in Biology, Physics, and Engineering'', J. A. Goldstein, F. Kappel, and W. Schappacher (eds.), M. Dekker, New York, 1991, pp. 139-183. MR 93i:35123
  • 38. F. Gesztesy and H. Holden, On trace formulas for Schrödinger-type operators, in Multiparticle Quantum Scattering with Applications to Nuclear, Atomic and Molecular Physics, D. G. Truhlar and B. Simon (eds.), Springer, New York, 1997, pp. 121-145. MR 98m:34172
  • 39. F. Gesztesy, H. Holden, and B. Simon, Absolute summability of the trace relation for certain Schrödinger operators, Commun. Math. Phys. 168, 137-161 (1995). MR 96b:34110
  • 40. F. Gesztesy, H. Holden, B. Simon, and Z. Zhao, Higher order trace relations for Schrödinger operators, Rev. Math. Phys. 7, 893-922 (1995). MR 97d:34094
  • 41. F. Gesztesy, N. J. Kalton, K. A. Makarov, and E. Tsekanovskii, Some Applications of Operator-Valued Herglotz Functions, in Operator Theory, System Theory and Related Topics. The Moshe Livsic Anniversary Volume, D. Alpay and V. Vinnikov (eds.), Operator Theory: Advances and Applications, Vol. 123, Birkhäuser, Basel, 2001, pp. 271-321.
  • 42. F. Gesztesy, A. Kiselev, and K. A. Makarov, Uniqueness results for matrix-valued Schrödinger, Jacobi, and Dirac-type operators, Math. Nachr., to appear.
  • 43. F. Gesztesy, M. Krishna, and G. Teschl, On isospectral sets of Jacobi operators, Commun. Math. Phys. 181, 631-645 (1996). MR 97i:47048
  • 44. F. Gesztesy and K. A. Makarov, Some applications of the spectral shift operator, in Operator Theory and its Applications, A. G. Ramm, P. N. Shivakumar, and A. V.Strauss (eds.), Fields Institute Communications, Vol. 25, Amer. Math. Society, Providence RI, 2000, pp. 267-292. MR 2001f:47018
  • 45. F. Gesztesy and K. A. Makarov, The $\Xi$ operator and its relation to Krein's spectral shift function, J. Analyse Math. 81, 139-183 (2000). MR 2001i:47016
  • 46. F. Gesztesy, K. A. Makarov, and S. N. Naboko, The spectral shift operator, in Mathematical Results in Quantum Mechanics, J. Dittrich, P. Exner, and M. Tater (eds.), Operator Theory: Advances and Applications, Vol. 108, Birkhäuser, Basel, 1999, pp. 59-90. MR 2000k:47012
  • 47. F. Gesztesy, K. A. Makarov, and E. Tsekanovskii, An Addendum to Krein's Formula, J. Math. Anal. Appl. 222, 594-606 (1998). MR 99g:47047
  • 48. F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV-equation, Trans. Amer. Math. Soc. 324, 465-525 (1991). MR 92b:35132
  • 49. F. Gesztesy and B. Simon, The $\xi$function, Acta Math. 176, 49-71 (1996). MR 97e:47078
  • 50. F. Gesztesy and B. Simon, A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure, Ann. of Math. 152, 593-643 (2000). MR 2001m:34185b
  • 51. F. Gesztesy and B. Simon, On local Borg-Marchenko uniqueness results, Commun. Math. Phys. 211, 273-287 (2000). MR 2001b:34020
  • 52. F. Gesztesy and E. Tsekanovskii, On matrix-valued Herglotz functions, Math. Nachr. 218, 61-138 (2000). MR 2001j:47018
  • 53. F. Gesztesy and R. Weikard, A characterization of all elliptic algebro-geometric solutions of the AKNS hierarchy, Acta Math. 181, 63-108 (1998). MR 99k:14052
  • 54. R. Giachetti and R. A. Johnson, Spectral theory of second-order almost periodic differential operators and its relation to classes of nonlinear evolution equations, Nuovo Cim. 82B, 125-168 (1984). MR 86j:58127
  • 55. B. Grebert, Inverse scattering for the Dirac operator on the real line, Inverse Problems 8, 787-807 (1992). MR 93j:34021
  • 56. B. Grebert and J.-C. Guillot, Gaps of one-dimensional periodic AKNS systems, Forum Math. 5, 459-504 (1993). MR 95d:34135
  • 57. B. J. Harris, The asymptotic form of the Titchmarsh-Weyl $m$-function associated with a Dirac system, J. London Math. Soc. (2), 31, 321-330 (1985). MR 87e:34032
  • 58. E. Hille, Green's transforms and singular boundary value problems, J. Math. Pures Appl. (9), 42, 331-349 (1963). MR 28:3191
  • 59. D. B. Hinton, private communication, September, 1999.
  • 60. D. B. Hinton, A. K. Jordan, M. Klaus, and J. K. Shaw, Inverse scattering on the line for a Dirac system, J. Math. Phys. 32, 3015-3030 (1991). MR 93b:34110
  • 61. D. B. Hinton, M. Klaus, and J. K. Shaw, Asymptotic phase, asymptotic modulus, and Titchmarsh-Weyl coefficient for a Dirac system, J. Math. Anal. Appl. 142, 108-129 (1989). MR 90e:34046
  • 62. D. B. Hinton, M. Klaus, and J. K. Shaw, Series representation and asymptotics for Titchmarsh-Weyl $m$-functions, Diff. Integral Eqs. 2, 419-429 (1989). MR 90m:34057
  • 63. D. B. Hinton and J. K. Shaw, On Titchmarsh-Weyl $M(\lambda)$-functions for linear Hamiltonian systems, J. Diff. Eqs. 40, 316-342 (1981). MR 82h:34018
  • 64. D. B. Hinton and J. K. Shaw, On the spectrum of a singular Hamiltonian system, Quaest. Math. 5, 29-81 (1982). MR 83b:34024
  • 65. D. B. Hinton and J. K. Shaw, Hamiltonian systems of limit point or limit circle type with both endpoints singular, J. Diff. Eqs. 50, 444-464 (1983). MR 85b:58044
  • 66. D. B. Hinton and J. K. Shaw, On boundary value problems for Hamiltonian systems with two singular points, SIAM J. Math. Anal. 15, 272-286 (1984). MR 87a:34021
  • 67. D. B. Hinton and J. K. Shaw, On the spectrum of a singular Hamiltonian system, II, Quaest. Math. 10, 1-48 (1986). MR 87k:34029
  • 68. D. B. Hinton and A. Schneider, On the Titchmarsh-Weyl coefficients for singular S-Hermitian Systems I, Math. Nachr. 163, 323-342 (1993). MR 94j:34027
  • 69. D. B. Hinton and A. Schneider, On the Titchmarsh-Weyl coefficients for singular S-Hermitian Systems II, Math. Nachr. 185, 67-84 (1997). MR 98h:34048
  • 70. H. Hochstadt, On the determination of a Hill's equation from its spectrum, Arch. Rat. Mech. Anal. 19, 353-362 (1965). MR 31:6019
  • 71. R. A. Johnson, The recurrent Hill's equation, J. Diff. Eqs. 46, 165-193 (1982). MR 84m:34037
  • 72. R. A. Johnson, $m$-Functions and Floquet exponents for linear differential systems, Ann. Mat. Pura Appl., Ser. 4, 147, 211-248 (1987). MR 88m:34021
  • 73. R. Johnson and J. Moser, The rotation number for almost periodic potentials, Commun. Math. Phys. 84, 403-438 (1982). MR 83h:34018
  • 74. R. Johnson, S. Novo, and R. Obaya, Ergodic properties and Weyl $M$-functions for random linear Hamiltonian systems, Proc. Roy. Soc. Edinburgh 130A, 1045-1079 (2000).
  • 75. V. I. Kogan and F. S. Rofe-Beketov, On square-integrable solutions of symmetric systems of differential equations of arbitrary order, Proc. Roy. Soc. Edinburgh 74A, 1-40 (1974). MR 56:12392
  • 76. S. Kotani, Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, in Stochastic Analysis, K. Ito (ed.), North-Holland, Amsterdam, 1984, pp. 225-247. MR 86h:60117
  • 77. S. Kotani, One-dimensional random Schrödinger operators and Herglotz functions, in ``Probabilistic Methods in Mathematical Physics'', K. Ito and N. Ikeda (eds.), Academic Press, New York, 1987, p. 219-250. MR 89h:60100
  • 78. S. Kotani and M. Krishna, Almost periodicity of some random potentials, J. Funct. Anal. 78, 390-405 (1988). MR 89i:60133
  • 79. S. Kotani and B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Commun. Math. Phys. 119, 403-429 (1988). MR 90e:82010
  • 80. A. M. Krall, $M(\lambda)$ theory for singular Hamiltonian systems with one singular point, SIAM J. Math. Anal. 20, 664-700 (1989). MR 91c:34036
  • 81. A. M. Krall, $M(\lambda)$ theory for singular Hamiltonian systems with two singular points, SIAM J. Math. Anal. 20, 701-715 (1989). MR 91c:34037
  • 82. M. Lesch and M. Malamud, The inverse spectral problem for first order systems on the half line, Operator Theory: Advances and Applications, Vol. 117, Birkhäuser, Basel, 2000, p. 199-238. MR 2001h:34116
  • 83. M. Lesch and M. Malamud, On the number of square integrable solutions and self-adjointness of symmetric first order systems of differential equations, Spectral and Evolution Problems, Vol. II (Sevastopol, 2000), Natl. Taurida Univ., Simferopol, 2001, pp. 150-167.
  • 84. B. M. Levitan and M. Otelbaev, Conditions for self-adjointness of the Schrödinger and Dirac operators, Trans. Moscow. Math. Soc. 42, 139-156 (1982). MR 82m:47034
  • 85. B. M. Levitan and I. S. Sargsjan, Introduction to Spectral Theory, Amer. Math. Soc., Providence, R. I., 1975. MR 51:6026
  • 86. B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer, Dordrecht, 1991. MR 92i:34119
  • 87. M. M. Malamud, Similarity of Volterra operators and related questions of the theory of differential equations of fractional order, Trans. Moscow Math. Soc. 55, 57-122 (1994). MR 98e:47051
  • 88. M. M. Malamud, A connection between the potential matrix of the Dirac system and its Wronskian, Dokl. Math. 52, 296-299 (1995). MR 98j:34019
  • 89. M. M. Malamud, Uniqueness questions in inverse problems for systems of ordinary differential equations on a finite interval, Trans. Moscow Math. Soc. 60, 173-224 (1999). MR 2001h:34026
  • 90. M. M. Malamud, Borg type theorems for first-order systems on a finite interval, Funct. Anal. Appl. 33, 64-68 (1999). MR 2000j:34021
  • 91. Yu. I. Manin, Matrix solitons and bundles over curves with singularities, Funct. Anal. Appl. 12, 286-295 (1978). MR 80g:35114
  • 92. V. A. Marchenko, Certain problems in the theory of second-order differential operators, Doklady Akad. Nauk SSSR 72, 457-460 (1950) (Russian). MR 12:183c
  • 93. V. A. Marcenko, Some questions in the theory of one-dimensional linear differential operators of the second order. I, Trudy Moskov. Mat. Obsc. 1, 327-420 (1952) (Russian); English transl. in Amer. Math. Soc. Transl. (2) 101, 1-104 (1973). MR 15:315b
  • 94. V. A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser, Basel, 1986. MR 88f:34034
  • 95. V. A. Marchenko, Nonlinear Equations and Operator Algebras, Reidel, Dordrecht, 1988. MR 89j:35003
  • 96. V. V. Martynov, Condition for discreteness and continuity of the spectrum of a selfadjoint system of first-order differential equations, Sov. Math. Dokl. 6, 1546-1550 (1965). MR 33:1762
  • 97. R. Mennicken, A.L. Sakhnovich, and C. Tretter, Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter, Duke Math. J. 109, 413-449 (2001).
  • 98. T. V. Misyura, Asymptotic formula for the Weyl solutions of the Dirac equations, Dokl. Akad. Nauk Ukrain. SSR 5, 26-28 (1991). (Russian) MR 92g:34113
  • 99. K. N. Murty, K. R. Prasad, and M. A. S. Srinivas, Upper and lower bounds for the solution of the general matrix Riccati differential equation, J. Math. Anal. Appl. 147, 12-21 (1990). MR 91a:34013
  • 100. S. A. Orlov, Nested matrix disks analytically depending on a parameter, and theorems on the invariance of ranks of radii of limiting disks, Math. USSR Izv. 10, 565-613 (1976). MR 54:13625
  • 101. G. Pólya and G. Szego, Problems and Theorems in Analysis I, Springer, Berlin, 1972. MR 49:8782
  • 102. A. Rybkin, KdV invariants and Herglotz functions, Diff. Integral Eqs. 14, 493-512 (2001). MR 2001k:34155
  • 103. A. Rybkin, On the trace approach to the inverse scattering problem in dimension one, SIAM J. Math. Anal. 32, 1248-1264 (2001).
  • 104. A. L. Sakhnovich, Asymptotic behavior of spectral functions of an $S$-node, Sov. Math. (Iz. VUZ) 32, No. 9, 92-105 (1988). MR 90f:47025
  • 105. A. L. Sakhnovich, Nonlinear Schrödinger equation on a semi-axis and an inverse problem associated with it, Ukrain. Math. J. 42, 316-323 (1990). MR 91c:34118
  • 106. A. L. Sakhnovich, Spectral functions of a canonical system of order $2n$, Math. USSR Sbornik 71, 355-369 (1992). MR 92c:47056
  • 107. A. Sakhnovich, Canonical systems and transfer matrix-functions, Proc. Amer. Math. Soc. 125, 1451-1455 (1997). MR 97g:34108
  • 108. A. Sakhnovich, Dirac type and canonical systems: spectral functions, direct and inverse problems, preprint, 2001.
  • 109. L. A. Sakhnovich, Evolution of spectral data and nonlinear equations, Ukrain. Math. J. 40, 459-461 (1988). MR 90g:35150
  • 110. L. A. Sakhnovich, Inverse problems for equations systems, in Matrix and Operator Valued Functions: The Vladimir Petrovich Potapov Memorial Volume, I. Gohberg and L. A. Sakhnovich (eds.), Operator Theory: Advances and Applications, Vol. 72, Birkhäuser, Basel, 1994, pp. 202-211. MR 95k:34022
  • 111. L. A. Sakhnovich, Method of operator identities and problems of analysis, St. Petersburg Math. J. 5, 1-69 (1994). MR 95f:47002
  • 112. L. A. Sakhnovich, Spectral analysis of a class of canonical differential systems, St. Petersburg Math. J. 10, 147-158 (1999). MR 99j:34120
  • 113. L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Operator Theory: Advances and Applications, Vol. 107, Birkhäuser, Basel, 1999. MR 2000e:47073
  • 114. Yu. L. Shmul'yan, On operator $R$-functions, Siberian Math. J. 12, 315-322 (1971). MR 45:949
  • 115. B. Simon, A new aproach to inverse spectral theory, I. Fundamental formalism, Ann. of Math. 150, 1029-1057 (1999). MR 2001m:34185a
  • 116. M. Sodin and P. Yuditskii, Almost periodic Sturm-Liouville operators with Cantor homogeneous spectrum, Comment. Math. Helvetici 70, 639-658 (1995). MR 96k:34175
  • 117. S. Timischl, A trace formula for one-dimensional Dirac operators, diploma thesis, Department of Mathematics, University of Missouri-Columbia, 1995.
  • 118. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea, New York, 1986. MR 89c:42002
  • 119. J. Weidmann, Oszillationsmethoden für Systeme gewöhnlicher Differentialgleichungen, Math. Z. 119, 349-373 (1971). MR 44:2975
  • 120. H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68, 220-269 (1910).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 34B20, 34E05, 34L40, 34A55

Retrieve articles in all journals with MSC (2000): 34B20, 34E05, 34L40, 34A55


Additional Information

Steve Clark
Affiliation: Department of Mathematics and Statistics, University of Missouri-Rolla, Rolla, Missouri 65409
Email: sclark@umr.edu

Fritz Gesztesy
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: fritz@math.missouri.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03025-8
Keywords: Weyl--Titchmarsh matrices, high-energy expansions, uniqueness results, trace formulas, Borg theorems, Dirac operators
Received by editor(s): February 15, 2002
Published electronically: April 30, 2002
Additional Notes: Supported in part by NSF grant INT-9810322.
Dedicated: Dedicated to F. V. Atkinson, one of the pioneers of this subject
Article copyright: © Copyright 2002 by the authors

American Mathematical Society