Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ad$-nilpotent $\mathfrak b$-ideals in $sl(n)$ having a fixed class of nilpotence: combinatorics and enumeration


Authors: George E. Andrews, Christian Krattenthaler, Luigi Orsina and Paolo Papi
Journal: Trans. Amer. Math. Soc. 354 (2002), 3835-3853
MSC (2000): Primary 17B20; Secondary 05A15, 05A19, 05E15, 17B30
DOI: https://doi.org/10.1090/S0002-9947-02-03064-7
Published electronically: June 10, 2002
MathSciNet review: 1926854
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the combinatorics of $ad$-nilpotent ideals of a Borel subalgebra of $sl(n+1,\mathbb C)$. We provide an inductive method for calculating the class of nilpotence of these ideals and formulas for the number of ideals having a given class of nilpotence. We study the relationships between these results and the combinatorics of Dyck paths, based upon a remarkable bijection between $ad$-nilpotent ideals and Dyck paths. Finally, we propose a $(q,t)$-analogue of the Catalan number $C_n$. These $(q,t)$-Catalan numbers count, on the one hand, $ad$-nilpotent ideals with respect to dimension and class of nilpotence and, on the other hand, admit interpretations in terms of natural statistics on Dyck paths.


References [Enhancements On Off] (What's this?)

  • 1. P. Cellini, P. Papi, Inversion tables and minimal left coset representatives for Weyl groups of classical type, J. Pure Appl. Algebra 161 (2001), 219-234. MR 2002d:20060
  • 2. H. Eriksson, K. Eriksson, Affine Weyl groups as infinite permutations, Electron. J. Combin. 5 (1998), Art. #R18, 32 pp. MR 99d:20006
  • 3. P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980), 125-161. MR 82f:05002a
  • 4. A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Alg. Combin. 5 (1996), 191-244. MR 97k:05208
  • 5. V.G. Kac, Infinite Dimensional Lie Algebras, Cambridge University Press, 1990. MR 92k:17038
  • 6. B. Kostant, Eigenvalues of a Laplacian and commutative Lie subalgebras, Topology 3, suppl. 2 (1965), 147-159. MR 29:4839
  • 7. B. Kostant, The Set of Abelian Ideals of a Borel Subalgebra, Cartan Decompositions, and Discrete Series Representations, Internat. Math. Res. Notices 5 (1998), 225-252. MR 99c:17010
  • 8. C. Krattenthaler, L. Orsina and P. Papi, Enumeration of $ad$-nilpotent $\mathfrak b$-ideals for simple Lie algebras , Adv. Appl. Math. (to appear).
  • 9. G. Lusztig, Some examples of square integrable representations of semisimple $p$-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623-653. MR 84j:22023
  • 10. G. Mohanty, Lattice path counting and applications, Academic Press, 1979. MR 81f:60020
  • 11. L. Orsina, P. Papi, Enumeration of $ad$-nilpotent ideals of a Borel subalgebra in type $A$ by class of nilpotence, Comptes Rendus Acad. Sciences Paris Ser. I Math. 330 (2000), 651-655. MR 2001a:17012
  • 12. P. Papi, Inversion tables and minimal left coset representatives for Weyl groups of classical type, J. Pure Appl. Algebra 161 (2001), 219-234. MR 2002d:20060
  • 13. J. Shi, The number of $\oplus$-sign types, Quart. J. Math. Oxford 48 (1997), 93-105. MR 98c:20080
  • 14. J. Shi, On two presentations of the affine Weyl groups of classical types, J. Algebra 221 (1999), 360-383. MR 2001g:20051
  • 15. R. P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth and Brooks/Cole, Pacific Grove, California, 1986; reprinted by Cambridge University Press, Cambridge, 1998. MR 98a:05001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 17B20, 05A15, 05A19, 05E15, 17B30

Retrieve articles in all journals with MSC (2000): 17B20, 05A15, 05A19, 05E15, 17B30


Additional Information

George E. Andrews
Affiliation: Department of Mathematics, The Pennsylvania State University, 215 McAllister Building, University Park, Pennsylvania 16802
Email: andrews@math.psu.edu

Christian Krattenthaler
Affiliation: Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
Email: KRATT@Ap.Univie.Ac.At

Luigi Orsina
Affiliation: Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma “La Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy
Email: orsina@mat.uniroma1.it

Paolo Papi
Affiliation: Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma “La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy
Email: papi@mat.uniroma1.it

DOI: https://doi.org/10.1090/S0002-9947-02-03064-7
Keywords: \emph{ad}-nilpotent ideal, Lie algebra, order ideal, Dyck path, Catalan number, Chebyshev polynomial
Received by editor(s): April 25, 2000
Published electronically: June 10, 2002
Additional Notes: The first author was partially supported by National Science Foundation Grant DMS 9870060.
The second author was partially supported by the Austrian Science Foundation FWF, grant P13190-MAT
The fourth author’s research was partially supported by EC’s IHRP Programme, grant HPRN-CT-2001-00272
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society