-nilpotent -ideals in having a fixed class of nilpotence: combinatorics and enumeration

Authors:
George E. Andrews, Christian Krattenthaler, Luigi Orsina and Paolo Papi

Journal:
Trans. Amer. Math. Soc. **354** (2002), 3835-3853

MSC (2000):
Primary 17B20; Secondary 05A15, 05A19, 05E15, 17B30

DOI:
https://doi.org/10.1090/S0002-9947-02-03064-7

Published electronically:
June 10, 2002

MathSciNet review:
1926854

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the combinatorics of -nilpotent ideals of a Borel subalgebra of . We provide an inductive method for calculating the class of nilpotence of these ideals and formulas for the number of ideals having a given class of nilpotence. We study the relationships between these results and the combinatorics of Dyck paths, based upon a remarkable bijection between -nilpotent ideals and Dyck paths. Finally, we propose a -analogue of the Catalan number . These -Catalan numbers count, on the one hand, -nilpotent ideals with respect to dimension and class of nilpotence and, on the other hand, admit interpretations in terms of natural statistics on Dyck paths.

**1.**P. Cellini, P. Papi,*Inversion tables and minimal left coset representatives for Weyl groups of classical type*, J. Pure Appl. Algebra**161**(2001), 219-234. MR**2002d:20060****2.**H. Eriksson, K. Eriksson,*Affine Weyl groups as infinite permutations*, Electron. J. Combin.**5**(1998), Art. #R18, 32 pp. MR**99d:20006****3.**P. Flajolet,*Combinatorial aspects of continued fractions*, Discrete Math.**32**(1980), 125-161. MR**82f:05002a****4.**A. M. Garsia and M. Haiman,*A remarkable**-Catalan sequence and**-Lagrange inversion*, J. Alg. Combin.**5**(1996), 191-244. MR**97k:05208****5.**V.G. Kac,*Infinite Dimensional Lie Algebras*, Cambridge University Press, 1990. MR**92k:17038****6.**B. Kostant,*Eigenvalues of a Laplacian and commutative Lie subalgebras*, Topology**3**, suppl. 2 (1965), 147-159. MR**29:4839****7.**B. Kostant,*The Set of Abelian Ideals of a Borel Subalgebra, Cartan Decompositions, and Discrete Series Representations*, Internat. Math. Res. Notices**5**(1998), 225-252. MR**99c:17010****8.**C. Krattenthaler, L. Orsina and P. Papi,*Enumeration of**-nilpotent**-ideals for simple Lie algebras*, Adv. Appl. Math. (to appear).**9.**G. Lusztig,*Some examples of square integrable representations of semisimple**-adic groups*, Trans. Amer. Math. Soc.**277**(1983), 623-653. MR**84j:22023****10.**G. Mohanty,*Lattice path counting and applications*, Academic Press, 1979. MR**81f:60020****11.**L. Orsina, P. Papi,*Enumeration of**-nilpotent ideals of a Borel subalgebra in type**by class of nilpotence*, Comptes Rendus Acad. Sciences Paris Ser. I Math.**330**(2000), 651-655. MR**2001a:17012****12.**P. Papi,*Inversion tables and minimal left coset representatives for Weyl groups of classical type*, J. Pure Appl. Algebra**161**(2001), 219-234. MR**2002d:20060****13.**J. Shi,*The number of**-sign types*, Quart. J. Math. Oxford**48**(1997), 93-105. MR**98c:20080****14.**J. Shi,*On two presentations of the affine Weyl groups of classical types*, J. Algebra**221**(1999), 360-383. MR**2001g:20051****15.**R. P. Stanley,*Enumerative Combinatorics*, Vol. 1, Wadsworth and Brooks/Cole, Pacific Grove, California, 1986; reprinted by Cambridge University Press, Cambridge, 1998. MR**98a:05001**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
17B20,
05A15,
05A19,
05E15,
17B30

Retrieve articles in all journals with MSC (2000): 17B20, 05A15, 05A19, 05E15, 17B30

Additional Information

**George E. Andrews**

Affiliation:
Department of Mathematics, The Pennsylvania State University, 215 McAllister Building, University Park, Pennsylvania 16802

Email:
andrews@math.psu.edu

**Christian Krattenthaler**

Affiliation:
Institut für Mathematik der Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria

Email:
KRATT@Ap.Univie.Ac.At

**Luigi Orsina**

Affiliation:
Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma “La Sapienza", Piazzale Aldo Moro 5, 00185 Roma, Italy

Email:
orsina@mat.uniroma1.it

**Paolo Papi**

Affiliation:
Dipartimento di Matematica, Istituto G. Castelnuovo, Università di Roma “La Sapienza", Piazzale Aldo Moro 5, 00185 Rome, Italy

Email:
papi@mat.uniroma1.it

DOI:
https://doi.org/10.1090/S0002-9947-02-03064-7

Keywords:
\emph{ad}-nilpotent ideal,
Lie algebra,
order ideal,
Dyck path,
Catalan number,
Chebyshev polynomial

Received by editor(s):
April 25, 2000

Published electronically:
June 10, 2002

Additional Notes:
The first author was partially supported by National Science Foundation Grant DMS 9870060.

The second author was partially supported by the Austrian Science Foundation FWF, grant P13190-MAT

The fourth author’s research was partially supported by EC’s IHRP Programme, grant HPRN-CT-2001-00272

Article copyright:
© Copyright 2002
American Mathematical Society