Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Extensions for finite Chevalley groups II


Authors: Christopher P. Bendel, Daniel K. Nakano and Cornelius Pillen
Journal: Trans. Amer. Math. Soc. 354 (2002), 4421-4454
MSC (2000): Primary 20C33, 20G10; Secondary 20G05, 20J06
DOI: https://doi.org/10.1090/S0002-9947-02-03073-8
Published electronically: July 2, 2002
MathSciNet review: 1926882
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a semisimple simply connected algebraic group defined and split over the field ${\mathbb{F} }_p$ with $p$ elements, let $G(\mathbb{F} _{q})$ be the finite Chevalley group consisting of the ${\mathbb{F} }_{q}$-rational points of $G$ where $q = p^r$, and let $G_{r}$ be the $r$th Frobenius kernel. The purpose of this paper is to relate extensions between modules in $\text{Mod}(G(\mathbb{F} _{q}))$ and $\text{Mod}(G_{r})$ with extensions between modules in $\text{Mod}(G)$. Among the results obtained are the following: for $r >2$ and $p\geq 3(h-1)$, the $G(\mathbb{F} _{q})$-extensions between two simple $G(\mathbb{F} _{q})$-modules are isomorphic to the $G$-extensions between two simple $p^r$-restricted $G$-modules with suitably ``twisted" highest weights. For $p \geq 3(h-1)$, we provide a complete characterization of $\text{H}^{1}(G(\mathbb{F} _{q}),H^{0}(\lambda))$ where $H^{0}(\lambda)=\text{ind}_{B}^{G} \lambda$ and $\lambda$ is $p^r$-restricted. Furthermore, for $p \geq 3(h-1)$, necessary and sufficient bounds on the size of the highest weight of a $G$-module $V$ are given to insure that the restriction map $\operatorname{H}^{1}(G,V)\rightarrow \operatorname{H}^{1}(G(\mathbb{F} _{q}),V)$ is an isomorphism. Finally, it is shown that the extensions between two simple $p^r$-restricted $G$-modules coincide in all three categories provided the highest weights are ``close" together.


References [Enhancements On Off] (What's this?)

  • [And1] H.H. Andersen, Extensions of modules for algebraic groups, Amer. J. Math., 106, (1984), 498-504. MR 86g:20056
  • [And2] H.H. Andersen, Extensions of simple modules for finite Chevalley groups, J. Algebra, 111, (1987), 388-403. MR 89b:20089
  • [AJ] H.H. Andersen, J.C. Jantzen, Cohomology of induced representations for algebraic groups, Math. Ann., 269, (1984), 487-525. MR 86g:20057
  • [AJL] H.H. Andersen, J. Jørgensen, P. Landrock, The projective indecomposable modules of $SL(2, p^n)$, Proc. London Math. Soc., (3) 46, (1983), 38-52. MR 84f:20044
  • [BNP1] C.P. Bendel, D.K. Nakano, C. Pillen, On comparing the cohomology of algebraic groups, finite Chevalley groups, and Frobenius kernels, J. Pure and Appl. Algebra, 163, no. 2, (2001), 119-146. MR 2002e:20094
  • [BNP2] C.P. Bendel, D.K. Nakano, C. Pillen, Extensions for finite Chevalley groups I., preprint, 2001.
  • [CPS1] E.T. Cline, B.J. Parshall, L.L. Scott, Cohomology of finite groups of Lie type I, Inst. Hautes Études Sci. Publ. Math., no. 45, (1975), 169-191. MR 53:3134
  • [CPS2] E.T. Cline, B.J. Parshall, L.L. Scott, Abstract Kazhdan-Lusztig theories, Tohoku Math. J., 45, (1993), 511-534. MR 94k:20079
  • [CPSK] E. Cline, B. Parshall, L. Scott, W. van der Kallen, Rational and generic cohomology, Invent. Math., 39, (1977), 143-163. MR 55:12737
  • [F] E.M. Friedlander, Cohomology of irreducible modules with large weights, Proc. Sympos. Pure Math., 47, Part 2, Amer. Math. Soc., Providence, RI, (1987), 187-193. MR 89c:20064
  • [FP] E.M. Friedlander, B.J. Parshall, Cohomology of infinitesimal and discrete groups. Math. Ann., 273, (1986), no. 3, 353-374. MR 87e:22026
  • [Hum] J.E. Humphreys, Nonzero $\text{Ext}^{1}$ for Chevalley groups (via algebraic groups), J. London Math. Soc., 31, (1985), 463-467. MR 86k:20040
  • [Jan1] J. C. Jantzen, Representations of Algebraic Groups, Academic Press, Orlando, 1987. MR 89c:20001
  • [Jan2] J. C. Jantzen, Über das Dekompositionsverhalten gewisser modularer Darstellungen halbeinfacher Gruppen und ihrer Lie-Algebren, J. Algebra, 49, (1977), 441-469. MR 58:5881
  • [Jan3] J. C. Jantzen, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. reine angew. Math, 317, (1980), 157-199. MR 82b:20057
  • [Jan4] J. C. Jantzen, Zur Reduktion modulo $p$ der Charaktere von Deligne und Lusztig, J. Algebra, 70, (1981), 452-474. MR 82m:20045
  • [Jan5] J. C. Jantzen, First cohomology groups for classical Lie algebras, Progress in Mathematics, 95, Birkhäuser, 1991, 289-315. MR 92e:17024
  • [Jan6] J. C. Jantzen, Low dimensional representations of reductive groups are semisimple, Algebraic Groups and Lie Groups, ed. G.I. Lehrer, Cambridge University Press, 1997, 255-266. MR 99g:20079
  • [KLT] S. Kumar, N. Lauritzen, J.F. Thomsen, Frobenius splittings of cotangent bundles of flag varieties, Invent. Math., 136, (1999), 603-621. MR 2000g:20088
  • [Pil] C. Pillen, Generic patterns for extensions of simple modules for finite Chevalley groups, J. Algebra, 212, (1999), 419-427. MR 2000d:20016
  • [Ye1] J. Ye, Extensions of simple modules for the group ${Sp}(4,K)$, J. London Math. Soc (2), 41, (1990), no. 1, 56-62. MR 91j:20105a
  • [Ye2] J. Ye, Extensions of simple modules for $G\sb 2(p)$, Comm. Alg., 22, (1994), no. 8, 2771-2802. MR 95e:20019
  • [Yeh] S. Yehia, Extensions of simple modules for the universal Chevalley group and its parabolic subgroups, Ph.D. Thesis, (1982), Warwick University.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C33, 20G10, 20G05, 20J06

Retrieve articles in all journals with MSC (2000): 20C33, 20G10, 20G05, 20J06


Additional Information

Christopher P. Bendel
Affiliation: Department of Mathematics, Statistics and Computer Science, University of Wisconsin-Stout, Menomonie, Wisconsin 54751
Email: bendelc@uwstout.edu

Daniel K. Nakano
Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602

Cornelius Pillen
Affiliation: Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688
Email: pillen@jaguar1.usouthal.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03073-8
Received by editor(s): November 16, 2001
Published electronically: July 2, 2002
Additional Notes: Research of the second author was supported in part by NSF grant DMS-0102225
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society