Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Detection of renewal system factors via the Conley index

Author: Jim Wiseman
Journal: Trans. Amer. Math. Soc. 354 (2002), 4953-4968
MSC (2000): Primary 37B30; Secondary 37B10, 54H20
Published electronically: August 1, 2002
MathSciNet review: 1926844
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $N$ be an isolating neighborhood for a map $f$. If we can decompose $N$ into the disjoint union of compact sets $N_1$ and $N_2$, then we can relate the dynamics on the maximal invariant set $\operatorname{Inv} N$ to the shift on two symbols by noting which component of $N$ each iterate of a point $x\in \operatorname{Inv} N$ lies in. We examine a method, based on work by Mischaikow, Szymczak, et al., for using the discrete Conley index to detect explicit subshifts of the shift associated to $N$. In essence, we measure the difference between the Conley index of $\operatorname{Inv}N$and the sum of the indices of $\operatorname{Inv} N_1$ and $\operatorname{Inv} N_2$.

References [Enhancements On Off] (What's this?)

  • 1. Lluís Alsedà, Jaume Llibre, and Micha\l Misiurewicz, Combinatorial dynamics and entropy in dimension one, second ed., World Scientific Publishing Co. Inc., River Edge, NJ, 2000. MR 2001j:37073
  • 2. S. A. Amitsur, On the characteristic polynomial of a sum of matrices, Linear and Multilinear Algebra 8 (1979/80), no. 3, 177-182. MR 82a:15014
  • 3. Maria C. Carbinatto, Jaroslaw Kwapisz, and Konstantin Mischaikow, Horseshoes and the Conley index spectrum, Ergodic Theory Dynam. Systems 20 (2000), no. 2, 365-377. MR 2001e:37020
  • 4. Maria C. Carbinatto and Konstantin Mischaikow, Horseshoes and the Conley index spectrum. II. The theorem is sharp, Discrete Contin. Dynam. Systems 5 (1999), no. 3, 599-616. MR 2000i:37009
  • 5. Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, RI, 1978. MR 80c:58009
  • 6. Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley and Sons, Inc., New York, 1939. MR 1:1b
  • 7. John Franks and David Richeson, Shift equivalence and the Conley index, Trans. Amer. Math. Soc. 352 (2000), no. 7, 3305-3322. MR 2000j:37013
  • 8. Paul R. Halmos, Finite-dimensional vector spaces, D. Van Nostrand Co., Inc., Princeton-Toronto-New York-London, 1958, 2nd ed., The University Series in Undergraduate Mathematics. MR 19:725b
  • 9. Jaroslaw Kwapisz, Cocyclic subshifts, Math. Z. 234 (2000), no. 2, 255-290. MR 2001j:37025
  • 10. Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 97a:58050
  • 11. Konstantin Mischaikow, The Conley index theory: a brief introduction, Conley index theory (Warsaw, 1997), Polish Acad. Sci., Warsaw, 1999, pp. 9-19. MR 2000c:37018
  • 12. Konstantin Mischaikow and Marian Mrozek, Chaos in the Lorenz equations: a computer-assisted proof, Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 1, 66-72. MR 95e:58121
  • 13. -, Isolating neighborhoods and chaos, Japan J. Indust. Appl. Math. 12 (1995), no. 2, 205-236. MR 96e:58104
  • 14. -, Chaos in the Lorenz equations: a computer assisted proof. II. Details, Math. Comp. 67 (1998), no. 223, 1023-1046. MR 98m:58095
  • 15. Konstantin Mischaikow, Marian Mrozek, and Andrzej Szymczak, Chaos in the Lorenz equations: a computer assisted proof. III. Classical parameter values, J. Differential Equations 169 (2001), no. 1, 17-56, Special issue in celebration of Jack K. Hale's 70th birthday, Part 3 (Atlanta, GA/Lisbon, 1998).
  • 16. Marian Mrozek, Leray functor and cohomological Conley index for discrete dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 1, 149-178. MR 90f:34076
  • 17. -, The Conley index and rigorous numerics, Non-linear analysis and boundary value problems for ordinary differential equations (Udine), Springer, Vienna, 1996, pp. 175-195.
  • 18. David Richeson, private communication, 1998.
  • 19. Joel W. Robbin and Dietmar Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Theory Dynam. Systems 8 (1988), Charles Conley Memorial Issue, 375-393. MR 89h:58094
  • 20. Dietmar Salamon, Connected simple systems and the Conley index of isolated invariant sets, Trans. Amer. Math. Soc. 291 (1985), no. 1, 1-41. MR 87e:58182
  • 21. Andrzej Szymczak, The Conley index for decompositions of isolated invariant sets, Fund. Math. 148 (1995), no. 1, 71-90. MR 96m:58154
  • 22. -, The Conley index for discrete semidynamical systems, Topology Appl. 66 (1995), no. 3, 215-240. MR 97f:58113
  • 23. -, The Conley index and symbolic dynamics, Topology 35 (1996), no. 2, 287-299. MR 97b:58054
  • 24. V. A. Ufnarovski{\u{\i}}\kern.15em and G. P. Chekanu, Nilpotent matrices, Mat. Issled. (1985), no. 85 Algebry, Koltsa i Topologii, 130-141, 155. MR 87e:15033
  • 25. Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Springer-Verlag, New York, 1983. MR 84k:58001
  • 26. R. F. Williams, Classification of one dimensional attractors, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 341-361. MR 42:1134
  • 27. Jim Wiseman, Symbolic dynamics from signed matrices, preprint, 2001.
  • 28. Piotr Zgliczynski, Computer assisted proof of chaos in the Rössler equations and in the Hénon map, Nonlinearity 10 (1997), no. 1, 243-252. MR 98g:58120

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37B30, 37B10, 54H20

Retrieve articles in all journals with MSC (2000): 37B30, 37B10, 54H20

Additional Information

Jim Wiseman
Affiliation: Northwestern University, Evanston, Illinois 60208
Address at time of publication: Department of Mathematics and Statistics, Swarthmore College, 500 College Ave., Swarthmore, Pennsylvania 19081

Keywords: Conley index, symbolic dynamics, renewal system
Received by editor(s): August 5, 2001
Received by editor(s) in revised form: March 28, 2002
Published electronically: August 1, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society