Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Location of the Fermat-Torricelli medians of three points


Authors: Carlos Benítez, Manuel Fernández and María L. Soriano
Journal: Trans. Amer. Math. Soc. 354 (2002), 5027-5038
MSC (2000): Primary 46B20, 46C15, 90B85
Published electronically: August 1, 2002
MathSciNet review: 1926847
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a real normed space $X$ with $\dim X\ge 3$ is an inner product space if and only if, for every three points $u,v,w\in X$, the set of points at which the function $x\in X\to \Vert u-x\Vert+\Vert v-x\Vert+\Vert w-x\Vert$attains its minimum (called the set of Fermat-Torricelli medians of the three points) intersects the convex hull of these three points.


References [Enhancements On Off] (What's this?)

  • 1. D. AMIR, ``Characterization of Inner Product Spaces'', Birkhäuser-Verlag, Basel, 1986. MR 88m:46001
  • 2. M. BARONTI, E. CASINI AND P. L. PAPINI, Equilateral sets and their central points, Rend. Mat. Appl. (7) 13 no. 1, (1993), 133-148. MR 94m:46020
  • 3. C. BEN´iTEZ, M. FERNÁNDEZ, AND M. L. SORIANO, Location of the 2-centers of three points, Rev. R. Acad. Cienc. Exact. Fis. Nat.(Esp) 4 (2000), no. 4, 515-517.
  • 4. C. BEN´iTEZ, M. FERNÁNDEZ, AND M. L. SORIANO, Weighted $p$-centers and the convex hull property, Numer. Funct. Anal. and Optimiz. 23 (2002), nos. 1 and 2, 39-45.
  • 5. C. BEN´iTEZ AND D. Y´AÑEZ, A Two-dimensional characterization of inner product spaces. Preprint.
  • 6. V. BOLTIANSKI, H. MARTINI, AND V. SOLTAN, ``Geometric Methods and Optimization Problems'', Kluwer Academic Publishers, Dordrecht, 1999. MR 2000c:90002
  • 7. D. CIESLIK, ``Steiner Minimal Trees'', Kluwer Academic Publishers, Dordrecht, 1998. MR 99i:05062
  • 8. R. DURIER, The Fermat-Weber problem and inner product spaces, J. Approx. Theory 78 (1994), no. 2, 161-173. MR 95g:41048
  • 9. R. DURIER, Convex hull properties in location theory, Numer. Funct. Anal. and Optimiz. 15 (5 and 6), (1994), 567-582. MR 95g:46038
  • 10. E. FASBENDER, Über die gleichseitigen Dreiecke, welche um ein gegebenes Dreieck gelegt werden können, J. reine angew. Math. 30 (1846), 230-231.
  • 11. P. FERMAT, ``Oeuvres'', Ed. M. M. P. Tannery, Ch. Henry, Tome I, Paris, Gauthier-Villars et Fils, 1891.
  • 12. A.L. GARKAVI, On the Chebyshev center and the convex hull of a set, Uspekhi Mat. Nauk 19 (1964), No. 6, 139-145. (Russian) MR 30:5221
  • 13. V. KLEE, Circumspheres and inner products, Math Scand. 8 (1960), 363-370. MR 23:A2734
  • 14. H. W. KUHN, ```Steiner's'' problem revisited', in G. B. Dantzig and B. C. Eaves (eds.), Studies in Optimization, MAA Studies in Mathematics, Vol. 10, Mathematical Assoc. of America, 1974, 52-70. MR 57:18835
  • 15. H. W. KUHN, Nonlinear programming: a historical view, SIAM-AMS Proceedings, Vol. 9 (1976), 1-26. MR 53:7485
  • 16. G. LEWICKI, On a new proof of Durier's theorem, Quaestiones Math. 18 (1995), 287-294. MR 96f:46033
  • 17. T. J. MCMINN, On the line segments of a convex surface in $E_3$, Pacific J. Math. 10 (1960), 943-946. MR 22:4987
  • 18. I. SINGER, ``Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces'', Springer-Verlag, New York, 1970. MR 42:4937
  • 19. L. VESELÝ, A characterization of reflexivity in the terms of the existence of generalized centers, Extrac. Math. 8 No. 2-3, (1993), 125-131. MR 95i:46024
  • 20. R. E. WENDELL AND A. P. HURTER, Location theory, dominance, and convexity, Oper. Res. 21 (1973), 314-321. MR 50:3897

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46B20, 46C15, 90B85

Retrieve articles in all journals with MSC (2000): 46B20, 46C15, 90B85


Additional Information

Carlos Benítez
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
Email: cabero@unex.es

Manuel Fernández
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
Email: ghierro@unex.es

María L. Soriano
Affiliation: Departamento de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain
Email: lsoriano@unex.es

DOI: http://dx.doi.org/10.1090/S0002-9947-02-03113-6
PII: S 0002-9947(02)03113-6
Keywords: Optimal location, medians, inner product spaces
Received by editor(s): November 27, 2000
Received by editor(s) in revised form: May 17, 2001
Published electronically: August 1, 2002
Additional Notes: Partially supported by MCYT (Spain) and FEDER, BFM2001-0849
Article copyright: © Copyright 2002 American Mathematical Society