Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

On the nonexistence of closed timelike geodesics in flat Lorentz 2-step nilmanifolds


Author: Mohammed Guediri
Journal: Trans. Amer. Math. Soc. 355 (2003), 775-786
MSC (2000): Primary 53C22, 53C50; Secondary 53B30
Published electronically: October 1, 2002
MathSciNet review: 1932725
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main purpose of this paper is to prove that there are no closed timelike geodesics in a (compact or noncompact) flat Lorentz 2-step nilmanifold $ N/\Gamma ,$ where $N$ is a simply connected 2-step nilpotent Lie group with a flat left-invariant Lorentz metric, and $\Gamma $ a discrete subgroup of $ N $ acting on $N$ by left translations. For this purpose, we shall first show that if $N$ is a 2-step nilpotent Lie group endowed with a flat left-invariant Lorentz metric $g,$ then the restriction of $g$ to the center $Z$of $N$ is degenerate. We shall then determine all 2-step nilpotent Lie groups that can admit a flat left-invariant Lorentz metric. We show that they are trivial central extensions of the three-dimensional Heisenberg Lie group $H_{3}$. If $\left( N,g\right) $ is one such group, we prove that no timelike geodesic in $\left( N,g\right) $ can be translated by an element of $N.$ By the way, we rediscover that the Heisenberg Lie group $H_{2k+1}$admits a flat left-invariant Lorentz metric if and only if $k=1.$


References [Enhancements On Off] (What's this?)

  • 1. A. Aubert, Structures affines et pseudo-métriques invariantes à gauche sur des groupes de Lie, Thesis, Univ. of Montpellier II, 1996.
  • 2. J.K. Beem, P.E. Ehrlich, and K. Easley, Global Lorentzian Geometry, Second Edition, Monographs and Textbooks in Pure and Applied Mathematics, vol. 202, Marcel Dekker, New York, Inc., 1996. MR 97f:53100
  • 3. J. Cheeger and D. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland, Amsterdam, 1975. MR 56:16538
  • 4. L. A. Cordero and P. E. Parker, Pseudo-Riemannian 2-step nilpotent Lie groups, Preprint (1999).
  • 5. P. Eberlein, Geometry of 2-step nilpotent groups with a left invariant metric, Ann. Scient. École Norm. Sup. 27 (1994), 611-660. MR 95m:53059
  • 6. D. Fried and W.M. Goldman, Three-Dimensional Affine Crystallographic Groups, Adv. in Math. 47 (1983), 1-49. MR 84d:20047
  • 7. D. Fried, Flat Spacetimes, J. Differential Geom. 26 (1987), 385-396. MR 89a:53074
  • 8. M. Guediri, Sur la complétude des pseudo-métriques invariantes à gauche sur les groupes de Lie nilpotents, Rend. Sem. Mat. Univ. Politec. Torino 52 (1994), 371-376. MR 96d:53078
  • 9. M. Guediri, On the existence of closed timelike geodesics in compact spacetimes, Math. Z. 239 (2002), 277-291.
  • 10. M. Guediri, Lorentz geometry of 2-step nilpotent Lie groups, (October 24, 2000) Submitted.
  • 11. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1, Cambridge Univ. Press, Cambridge, 1973. MR 54:12154
  • 12. S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, New York, 1978. MR 80k;53081
  • 13. A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), 147-153. MR 81c:58059
  • 14. A. Kaplan, Riemannian nilmanifolds attached to Clifford modules, Geom. Dedicata 11 (1981), 127-136. MR 82h:22008
  • 15. A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35-42. MR 84h:53063
  • 16. K. Nomizu, Left-invariant Lorentz metrics on Lie groups, Osaka J. Math. 16 (1979), 143-150. MR 80g:53048
  • 17. J.F. Price, Lie groups and compact groups, London Mathematical Society Lecture Note Series, No. 25, Cambridge Univ. Press, Cambridge, 1977. MR 56:8743
  • 18. M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, New York, 1972. MR 58:22394a
  • 19. F.T. Tipler, Existence of closed timelike geodesics in Lorentz spaces, Proc. Amer. Math. Soc. 76 (1979), 145-147. MR 80f:83016

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53C22, 53C50, 53B30

Retrieve articles in all journals with MSC (2000): 53C22, 53C50, 53B30


Additional Information

Mohammed Guediri
Affiliation: Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
Email: mguediri@ksu.edu.sa

DOI: http://dx.doi.org/10.1090/S0002-9947-02-03114-8
PII: S 0002-9947(02)03114-8
Keywords: 2-step nilpotent Lie groups, left-invariant Lorentz metrics, closed timelike geodesics
Received by editor(s): July 6, 2001
Received by editor(s) in revised form: June 5, 2002
Published electronically: October 1, 2002
Article copyright: © Copyright 2002 American Mathematical Society