Base loci of linear series are numerically determined
Author:
Michael Nakamaye
Journal:
Trans. Amer. Math. Soc. 355 (2003), 551566
MSC (2000):
Primary 14J17
Published electronically:
October 9, 2002
MathSciNet review:
1932713
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We introduce a numerical invariant, called a moving Seshadri constant, which measures the local positivity of a big line bundle at a point. We then show how moving Seshadri constants determine the stable base locus of a big line bundle.
 [DEL]
J.P. Demailly, L. Ein, and R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137156. MR 2002a:14016
 [ELN]
L. Ein, R. Lazarsfeld, and M. Nakamaye, Zero Estimates, Intersection Theory, and a Theorem of Demailly, in Andreatta and Peternell, eds., Higher Dimensional Complex Varieties, de Gruyter, 1996, pp. 183208. MR 99c:14006
 [EV]
H. Esnault and E. Viehweg, Dyson's Lemma for polynomials in several variables (and the Theorem of Roth), Invent. Math., 78, 1984, pp. 445490. MR 86e:11053
 [Fu]
W. Fulton, Intersection Theory, SpringerVerlag, 1984. MR 85k:14004
 [KMM]
Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the Minimal Model program, In: Oda, T. (ed.) Algebraic Geometry. Proc. Symp., Sendai, 1985, (Adv. Stud. Pure Math.,10, pp. 283360). MR 89e:14015
 [N]
M. Nakamaye, Stable Base Loci of Linear Series, Mathematische Annalen, 318, 2000, pp. 837847. MR 2002a:14008
 [DEL]
 J.P. Demailly, L. Ein, and R. Lazarsfeld, A subadditivity property of multiplier ideals, Michigan Math. J. 48 (2000), 137156. MR 2002a:14016
 [ELN]
 L. Ein, R. Lazarsfeld, and M. Nakamaye, Zero Estimates, Intersection Theory, and a Theorem of Demailly, in Andreatta and Peternell, eds., Higher Dimensional Complex Varieties, de Gruyter, 1996, pp. 183208. MR 99c:14006
 [EV]
 H. Esnault and E. Viehweg, Dyson's Lemma for polynomials in several variables (and the Theorem of Roth), Invent. Math., 78, 1984, pp. 445490. MR 86e:11053
 [Fu]
 W. Fulton, Intersection Theory, SpringerVerlag, 1984. MR 85k:14004
 [KMM]
 Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the Minimal Model program, In: Oda, T. (ed.) Algebraic Geometry. Proc. Symp., Sendai, 1985, (Adv. Stud. Pure Math.,10, pp. 283360). MR 89e:14015
 [N]
 M. Nakamaye, Stable Base Loci of Linear Series, Mathematische Annalen, 318, 2000, pp. 837847. MR 2002a:14008
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
14J17
Retrieve articles in all journals
with MSC (2000):
14J17
Additional Information
Michael Nakamaye
Affiliation:
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico 87131
Email:
nakamaye@math.unm.edu
DOI:
http://dx.doi.org/10.1090/S000299470203180X
PII:
S 00029947(02)03180X
Received by editor(s):
January 16, 2002
Published electronically:
October 9, 2002
Additional Notes:
Partially supported by NSF Grant DMS 0070190
Article copyright:
© Copyright 2002
American Mathematical Society
