Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds II
Author:
Martin Dindos
Journal:
Trans. Amer. Math. Soc. 355 (2003), 1365-1399
MSC (2000):
Primary 35J65, 35B65; Secondary 46E35, 42B20
DOI:
https://doi.org/10.1090/S0002-9947-02-03210-5
Published electronically:
December 2, 2002
MathSciNet review:
1946396
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Extending our recent work for the semilinear elliptic equation on Lipschitz domains, we study a general second-order Dirichlet problem in
. We improve our previous results by studying more general nonlinear terms
with polynomial (and in some cases exponential) growth in the variable
. We also study the case of nonnegative solutions.
- 1. J. Bergh and J. Löfström, Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, no. 223, Springer-Verlag, Berlin-New York, 1976.MR 58:2349
- 2. Z.-Q. Chen, R. J. Williams and Z. Zhao, On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions, Math. Ann. 315 (1999), 735-769.MR 2001a:35061
- 3. M. Dindos, Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds, Comm. Partial Differential Equations 27 (2002), 219-281.
- 4.
M. Dindos, Hardy spaces and potential theory on
domains in Riemannian manifolds, Preprint (2001).
- 5. M. Dindos and M. Mitrea, Semilinear Poisson Problem in Sobolev-Besov spaces on Lipschitz domains, Publicacions Matemàtiques 46 (2002), 353-403.
- 6.
B. Dahlberg, On the Poisson integral for Lipschitz and
domains, Studia Math. LXVI. (1979), 13-26.MR 81g:31007
- 7.
B. Dahlberg and C. Kenig, Hardy spaces and the Neumann problem in
for Laplace's equation in Lipschitz domains, Ann. Math. 125 (1987), 437-465.MR 88d:35044
- 8. B. Dahlberg, C. Kenig and G. Verchota, Boundary value problems for the system of elastostatics on Lipschitz domains, Duke Math. J. 57 (1988), 795-818.MR 90d:35259
- 9.
E. Fabes, M. Jodeit, Jr. and N. Rivère, Potential techniques for boundary value problems on
-domains, Acta Math. 141 (1978), 165-186.MR 80b:31006
- 10. E. Fabes, C. Kenig and G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains, Duke Math. J. 57 (1988), 769-793.MR 90d:35258
- 11. D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order (3rd ed.), Springer-Verlag, Berlin-New York, 1998.MR 2001k:35004
- 12. V. Isakov and A. I. Nachman, Global uniqueness for a two dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc. 347 (1995), 3375-3390.MR 95m:35202
- 13. Z. Jin, Solvability of Dirichlet problem for semilinear elliptic equations on certain domains, Pacific J. Math. 176 (1996), 117-128.MR 97m:35082
- 14. F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426.MR 24:A1348
- 15. C. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83, American Mathematical Society, Providence, RI, 1994.MR 96a:35040
- 16. C. Kenig, Elliptic boundary value problems on Lipschitz domains, Beijing Lectures in Harmonic Analysis (E. Stein, ed.), Princeton University Press, Princeton, 1986, pp. 131-183. MR 88a:35066
- 17. R. Mazzeo and M. Taylor, Curvature and Uniformization, Israel J. Math. 130 (2002), 323-346.
- 18.
D. Mitrea, M. Mitrea and J. Pipher, Vector potential theory on nonsmooth domains in
and applications to electromagnetic scattering, J. Fourier Anal. and Appl. 3 (1997), 131-192.MR 99e:31009
- 19. D. Mitrea, M. Mitrea and M. Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Memoirs Amer. Math. Soc. 150 (2001), no. 713.MR 2002g:58026
- 20. M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains in Riemannian manifolds, J. Funct. Anal. 163 (1999), 181-251.MR 2000b:35050
- 21.
M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds:
, Hardy and Hölder space results, Comm. Anal. Geom. 9 (2001), no. 2, 369-421. MR 2002f:31012
- 22. M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors, Comm. Partial Differential Equations 25 (2000), 1487-1536. MR 2001h:35040
- 23. M. Taylor, Partial differential equations, vols. 1-3, Springer-Verlag, New York, 1996.MR 98b:35002b; MR 98b:35003; MR 98k:35001
- 24. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), 472-611.MR 86e:35038
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J65, 35B65, 46E35, 42B20
Retrieve articles in all journals with MSC (2000): 35J65, 35B65, 46E35, 42B20
Additional Information
Martin Dindos
Affiliation:
Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853-4201
Email:
dindos@math.cornell.edu
DOI:
https://doi.org/10.1090/S0002-9947-02-03210-5
Keywords:
Nonlinear equations,
semilinear elliptic problems,
Dirichlet boundary problems,
Lipschitz domains,
Riemannian manifolds
Received by editor(s):
September 11, 2001
Received by editor(s) in revised form:
July 24, 2002
Published electronically:
December 2, 2002
Article copyright:
© Copyright 2002
American Mathematical Society